谁能解释下功率信号的频谱、能量信号的频谱密度是什么,能量信号的能量谱密度,功率信号的功率谱密度之间的区别

确知信号重点_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
44页免费43页免费29页免费41页免费36页免费 30页免费27页免费10页免费8页免费11页免费
喜欢此文档的还喜欢33页免费7页1下载券4页1下载券18页1下载券27页免费
确知信号重点|
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢6167人阅读
使用matlab进行频谱分析时若干问题解释
作者:jbb0523(彬彬有礼)
本文共说明了以下问题:
一、在matlab中如何表示频率为f1,以采样率f抽样后所得到的数字信号?如此表示的依据是什么?
二、使用matlab画出的频谱(一般是幅度谱或称振幅谱)的横坐标轴的意义是什么?如何根据横坐标轴的值得到其所对应的实际频率?
三、实数序列的频谱除第零个点和第N/2个(当N为偶数时)点外(从0~N-1),其它具有共轭对称性质;复数序列呢?
四、频率分辨率指的是什么?高分辨谱和高密度谱有何区别?有何作用?
约定:对于信号cos(wt),它是以周期为2*pi/w为周期的信号,角频率w=2*pi*f,我们经常这样称呼这个信号:它的角频率为w,频率为f Hz,周期T=1/f秒;
1)在matlab中对信号s1(t)=cos(w1t)=cos(2*pi*f1*t)进行采样,其中f1=1000Hz,根据奈奎斯特采样定理,采样频率f&=2*f1,在此我们取f=3000Hz。
在matlab中仿真也好,实际中处理的信号也罢,一般都是数字信号。而采样就是将信号数字化的一个过程,设将信号s1(t)数字化得到信号,其中n=[0…N-1],N为采样点数。
我们来解释一下s1(n),为什么说s1(n)=cos(2*pi*f1/f*n)表示以采样率f对频率为f1的信号进行采样的结果呢?采样,顾名思义,就是对信号隔一段时间取一个值,而隔的这段时间就是采样间隔,取其倒数就是采样率了,那们我们看s1(n)=cos(2*pi*f1/f*n),将前面的参数代入,当n=0时,s1(0)=cos(0),当n=1时,s1(1)=cos(2*pi*),当n=2时, s1(2)=cos(2*pi*),当n=3时,s1(3)=cos(2*pi*),这是不是想当于对信号s1(t)的一个周期内采了三个样点呢?对一个频率为1000Hz的信号每周期采三个样点不就是相当于以3倍于频率的采样率进行采样呢?注意,当n=3时相当于下一个周期的起始了。
我们取采样点数N=64,即对64/3=21.3个周期,共计64/3/f1=21.3ms时长。
我们在matlab中输入以下命令:
&& f1=1000;f=3000;
&& s1=cos(2*pi*f1/f*n);
&& plot(abs(fft(s1)));
我们对图1进行一下解释,以说明图中的横坐标轴的所代表的意义。
对于信号,我们知道它的傅里叶变换是S1(w)=pi*δ(w-w1)+δ(w+w1)]。
如果在范围内观察信号s1(t)的频谱,则应该在和-2*pi*1000两个频点上有两根谱线,而对采样后的数字信号,频率坐标轴范围-2*pi**pi*3000/2将被归一化到-2*pi*(00~2*pi*(00即-pi~pi范围内,因此将在+2*pi*和-2*pi*即+2*pi/3和-2*pi/3的两个频点上有两根谱线。注意,此时坐标轴上的2*pi代表着3000Hz的频率范围。
另外还有一点应该明白的是,时域采样意味着频域的周期延拓,即-pi~pi上的谱线与范围内的谱线是一模一样的,其中M为任意的整数。更通俗的说,a~b之间的频谱与a+M*2pi~b+M*2pi之间的频谱是一模一样的。因此-pi~0之间的频谱与pi*2pi之间的频谱是一样的。
在matlab中,如果仅简单的执行plot绘图命令,坐标横轴将是1~N,那么这1~N代表着什么呢?是的,应该代表0*2pi,应用到上面的例子即是0~3000Hz的频率范围。
其中1~N/2代表0~pi,而N/2~N代表-pi~0。
从理论上讲s1(t)=cos(2*pi*f1*t)应该在1000Hz和-1000Hz两个频点上有两根线,即应该在x1(其中x1*(3000/2) /(64/2)=1000,解得x1=21.3)上和64-x1上有两根谱线。观察图1可知,两个峰值大约对应横轴坐标为21和43=64-21两个点。
若令s2(t)=sin(w1*t),则傅里叶变换是S1(w)=-j*pi*δ(w-w1)-δ(w+w1)],在matlab中执行以下命令:
&& f1=1000;f=3000;
&& s2=sin(2*pi*f1/f*n);
&& plot(abs(fft(s2)));
则可得其频谱,如图2所示:
由图可得两个峰值的位置基本与图1相同,这由其傅里叶表达式也可以得出此结论。
以上分别说明了余弦和正弦的频谱,而且余弦和正弦均是实数序列,实数序列的离散傅里叶变换(DFT)具有共轭对称性质(此性质可百度或查阅数字信号处理相关书籍或自行推导,很简单的),这从图中也可以看出。(画图时取其模值,共轭取模与原先数取模将变成相等)
2)复数的频谱
若令,则计算其傅里叶变换可得S2(w)=pi*[δ(w-w1)+δ(w+w1)]+j*{-j*pi*[δ(w-w1)-δ(w+w1)]}=2*pi*δ(w-w1),因此频谱中将只有一根谱线。
在matlab中输入以下命令:
&& f1=1000;f=3000;
&& s3=cos(2*pi*f1/f*n)+1j*sin(2*pi*f1/f*n);
&& plot(abs(fft(s3)));
从图3可以看出,对于一个复数序列求频谱,它的幅度谱将不再是对称的两根谱线。其实经过类似于实数序列的推导可以得出,复数序列的频谱将不再具有类似于实数序列的共轭对称性质。
当w1为负值时会如何呢?输入以下命令计算s4(t)=cos(w1*t)+j*sin(w1*t)的频谱:
&& s4=cos(2*pi*f1/f*n)+1j*sin(2*pi*f1/f*n);
&& plot(abs(fft(s4)));
对比图3和图4可知,当频率为正值时,峰值将在1~32范围内;而当频率为负值时,峰值将在33~64之间。此性质可通俗的描述如下:
对于信号s(t)=cos(2*pi*f*t)+j*sin(2*pi*f*t),对其进行符合奈奎斯特采样定理的采样,设采样率为fs,采样点数为N,得到数字信号s(n),n=[0,…,N-1],则对s(n)做DFT变换进行谱分析后得到S(k),k=[0,…,N-1]。观察S(k)的幅度谱,若k=0~N/2-1之间有峰值,则s(t)的频率f在0~fs/2之间;若k=N/2~N-1之间有峰值,则s(t)的频率f在-fs/2~0之间;并且有且只有一个峰值。
计算公式如下:设幅度谱峰值当k=k1时出现,则s(t)的频率为:
同理,可推出如下性质:
对于信号s(t)=cos(2*pi*f*t)-j*sin(2*pi*f*t),对其进行符合奈奎斯特采样定理的采样,设采样率为fs,采样点数为N,得到数字信号s(n),n=[0,…,N-1],则对s(n)做DFT变换进行谱分析后得到S(k),k=[0,…,N-1]。观察S(k)的幅度谱,若k=0~N/2-1之间有峰值,则s(t)的频率f在-fs/2~0之间;若k=N/2~N-1之间有峰值,则s(t)的频率f在0~fs/2之间;并且有且只有一个峰值。
计算公式如下:设幅度谱峰值当k=k1时出现,则s(t)的频率为:
3)下面引入一个新的概念:频率分辨率
频率分辩率是指频域取样中两相邻点间的频率间隔。更确切的说是如果某一信号含有两个频率成分f1和f2,Of=|f2-f1|,频率分辨率的概念是如果频率分辨率大于Of,对信号进行谱分析后将不能视别出其含有两个频率成分,这两个频率将混叠在一起。
以下是摘自华科姚天任《数字信号处理(第二版)》第92页的一段:
现在我们设定信号s5(t)=cos(w1*t)+sin(w2*t),其中w1=2*pi*1000,w2=2*pi*1100
在matlab中输入以下命令计算其频谱:
&& s5=cos(2*pi*f1/f*n)+sin(2*pi*f2/f*n);
&& plot(abs(fft(s5)));
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 图5
从图5中可以看出能够分辨出f1=1000Hz和f2=1100Hz两个频率分量。
我们利用上面的理论来计算一下此时的频率分辨率:
采样频率fs=3000Hz
采样点个数N=64
最长记录长度tp=N*(1/fs)
频率分辨率F=1/tp=fs/N=.875Hz
因为F&f2-f1=100Hz,因此能够分辨出两个频率分量。
下面我们作如下尝试:
第一种尝试:fs不变仍为3000Hz,即奈奎斯特定理仍然满足,s5(t)的最高频率分量1100Hz的两倍,但将采样点个数N减小为24个,在matlab中输入以下命令:
&& f1=0;f=3000;
&& s5=cos(2*pi*f1/f*n)+sin(2*pi*f2/f*n);
&& plot(abs(fft(s5)));
第二种尝试:采样率fs升为8000Hz,即满足奈奎斯特采样定理,大于信号s5(t)的最高频率分量1100Hz的两倍,采样点个数N不变,仍为64个,在matlab中输入以下命令:
&& f1=0;f=8000;
&& s5=cos(2*pi*f1/f*n)+sin(2*pi*f2/f*n);
&& plot(abs(fft(s5)));
由图6和图7可以看出,这两种尝试虽然满足奈奎斯特采样定理,但都不能分辨出两个频率分量,用前面的理论知识可以作如下分析:
第一种尝试的频率分辨率F=1/tp=fs/N=Hz&100Hz
第二种尝试的频率分辨率F=1/tp=fs/N=Hz&100Hz
因此以上两种尝试均不能分辨出频率间隔为100Hz的两个频率分量。
4)最后我们引用高密度谱的概念,如图6所示,频谱很不平滑,呈很明显的折线状态,我们在matlab中输入以下命令:
&& f1=0;f=3000;
&& s5=cos(2*pi*f1/f*n)+sin(2*pi*f2/f*n);
&& plot(abs(fft([s5,zeros(1,104)])));
图8是将图6中的信号在时域补了104个零后才进行谱分析的。比较图6与图8,虽然相对于图6来说图8的频率分辨率并没有增加,但其每个点所代表的频率更小了,也就是密度更高了(同样3000Hz的频率,图6中使用了24点,而图8中使用了128点),这就是高密度谱。通常可以靠补零的方式来提高频谱的密度,但补零不能提高频率分辨率。很多人在此很迷惑,在末尾加零后,使一个周期内的点数增加,必然使样点间隔更近,谱线更密,事以前看不到的谱分量就可以看到了,能够看到更多的谱,不是提高分辨力了吗?其实加零后,并没有改变原有记录的数据,原有数据的频谱一开始就存在,我们只是有的看不见,加零后只是让我们看见原来本就存在的频率,也就是说,原始数据代表的该有的频率就有,没有的频率加再多的零(极限是成连续的),也没法看见。
在数字信号处理中,高分辨率谱和高密度谱是较为易混淆的两个概念。获得高分辨率谱的途径是增加信号采样的记录时间tp,而高密度谱则是通过在时域补零得到的。高分辨谱的用途很显示,可以分辨出频率间隔更小的两个频率分量,那么高分辨率谱有什么作用呢?要想明白高密度谱的概念,就不得知道一个名词:栅栏效应。高分辨率谱就是为了减小栅栏效效的。实际信号是无限长的,其频谱是连续的,但是要用计算机对信号进行频谱分析,就必须把它截短使之成为有限长度为tp的信号,这样的截短相当于对信号加矩形窗。经过加窗截取,信号的周期变为tp,其频谱相应地由原来的连续谱变为离散谱,离散谱的谱线只在f=1/tp的整数倍的位置上才出现,于是谱线间的实际信号的谱线有可能被挡住而损失掉,这称之为栅栏效应。例如截取信号长度为tp=0.5s,则可得到的谱线为2Hz,4Hz,6Hz,8Hz,…,若信号中包含频率为7Hz的分量,则该分量将被栅栏挡住,无法显示出来。
参考文献:
【1】姚天任.数字信号处理(第二版)[M].华中科技大学出版社,2000.
【2】万灵达.基于FFT的高精度频率估计算法研究[D].西安电子科技大学,2010.
【3】其它网络资源.
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:329582次
积分:3227
积分:3227
排名:第3479名
原创:87篇
转载:50篇
评论:103条
(3)(8)(1)(2)(1)(5)(1)(1)(4)(7)(7)(9)(6)(1)(5)(9)(8)(11)(5)(10)(10)(8)(5)(2)(2)(1)(1)(3)(3)温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!&&|&&
LOFTER精选
一、能量信号和功率信号&&&根据信号可以用能量式或功率式表示可分为能量信号和功率信号。能量信号,如各类瞬变信号。在非电量测量中,常将被测信号转换为电压或电流信号来处理。显然,电压信号加在单位电阻(R=1时)上的瞬时功率为P(t)=&x2(t)/R=x2(t)。瞬时功率对时间积分即是信号在该时间内的能量。通常不考虑量纲,而直接把信号的平方及其对时间的积分分别称为信号的功率和能量。当x(t)满足&&&&&&&&&&&&&&&&&&&&&&&&则信号的能量有限,称为能量有限信号,简称能量信号。满足能量有限条件,实际上就满足了绝对可积条件。功率信号,如各种周期信号、常值信号、阶跃信号等。若x(t)在区间(-∞,∞)的能量无限,不满足(1.3)式条件,但在有限区间(-T/2,T/2)满足平均功率有限的条件&&&&&&&&&&&&&&&&&&&&&&&&&注意:上述都是针对信号书实数,若是复数,则公式中都取信号模的平方二、频谱和频谱密度频谱密度:设一个能量信号为s(t),则它的频谱密度S(w)可以由付氏变换求得。S(w)=F(s(t))能量信号的频谱密度S(f)和功率信号C(jnw)(比如一个周期信号)的频谱主要区别有:(1)S(f)是连续谱,而C(jnw)是离散谱;(2)S(f)单位是幅度/频率,而C(jnw)单位是幅度;(这里都是指其频谱幅度)(3)能量信号的能量有限,并连续的分布在频率轴上,每个频率点上的信号幅度是无穷小的,只有df上才有确定的非0振幅;功率信号的功率有限,但能量无限,它在无限多的离散频率点上有确定的非0振幅。请看下面的推导:由周期信号推导非周期信号的频谱(频谱密度):&由上面可以看书,F(jW)是一个谱密度函数,它的实际幅度是F(nΩ),是个无穷小量,但是F(nΩ)*2π/Ω以无穷小/无穷小得到一个常量,单位是幅度/频率。并且F(nΩ)*2π/Ω =F(nΩ)*2π/(2πΔf) = F(nΩ)/Δf = F(nΩ)δ(nΩ),在频域上积分就是其频谱幅度。同时,&其中,An/2=Cn=F(nΩ)(Cn是以ejnΩt为基底的系数)三 功率谱(密度)与能量谱(密度)功率谱:也称功率谱密度(PSD),单位是功率/Hz。针对功率有限信号的(能量有限信号用能量谱密度),所表现的是单位频带内信号功率随频率的变换情况。能量谱:也叫能量谱密度,单位是焦耳/Hz。针对能量有限的信号,能量信号傅里叶变换绝对值的平方就是能量谱(密度)【帕塞瓦尔定理】。功率谱针对能量无限(功率有限)的功率信号,功率信号不满足傅里叶变换的绝对可积的条件,其付里叶变换是不存在的,如正弦函数的付里叶变换是不存在,只有引入了冲激函数才求得其付里叶变换。功率谱不能直接进行傅立叶变换,通常使用短截函数进行截取后,如图:使用时间T进行短截原来的信号,当T-&无穷大时:这是对模拟信号的时域计算方法,当进行AD采样,变为数字信号后,宜根据下文计算方法求功率谱。----------------------------------------------------------------------------------------------四功率谱计算公式周期图法:它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。&&&&&|X(ejw)|2=y.*conj(y)=real2+imag2=abs(y)2自相关法:根据维纳-辛钦定理,先估计相关函数,再经傅立叶变换得功率谱估计。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲,所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。能量信号频谱通常既含有幅度也含有相位信息;傅里叶变换幅度谱的平方(二次量纲),又叫能量谱(密度),它描述了信号能量的频域分布;功率信号的功率谱描述了信号功率随频率的分布特点,也已证明,信号功率谱恰好是其自相关函数的傅氏变换。----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别: 1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列) 2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。热心网友回答提问者对于答案的评价:谢谢解答。频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。功率谱是个什么概念?它有单位吗?随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。功率谱密度,从名字分解来看就是说,观察对象是功率,观察域是谱域,通常指频域,密度,就是指观察对象在观察域上的分布情况。一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周期分量并且均值为零,这样才能保证相关函数在时差趋向于无穷时衰减,所以lonelystar说的不全对,光靠相关函数解决不了许多问题,要求太严格了;对于第二种方式,虽然一个平稳随机过程在无限时间上不能进行傅立叶变换,但是对于有限区间,傅立叶变换总是存在的,可以先架构有限时间区间上的变换,在对时间区间取极限,这个定义方式就是当前快速傅立叶变换(FFT)估计谱密度的依据;第三种方式是根据维纳的广义谐和分析理论:Generalized harmonic analysis, Acta Math, 55(8,利用傅立叶-斯蒂吉斯积分,对均方连续的零均值平稳随机过程进行重构,在依靠正交性来建立的。另外,对于非平稳随机过程,也有三种谱密度建立方法,由于字数限制,功率谱密度的单位是G的平方/频率。就是就是函数幅值的均方根值与频率之比。是对随机振动进行分析的重要参数。功率谱密度的国际单位是什么?如果是加速度功率谱密度,加速度的单位是m/s^2,那么,加速度功率谱密度的单位就是(m/s^2)^2/Hz,而Hz的单位是1/s,经过换算得到加速度功率谱密度的单位是m^2/s^3.同理,如果是位移功率谱密度,它的单位就是m^2*s,如果是弯矩功率谱密度,单位就是(N*m)^2*s位移功率谱——m^2*s速度功率谱——m^2/s加速度功率谱——m^2/s^3信号傅立叶变换的幅度图和频谱图matlab示例fs=100;x=-2:1/fs:2;y=sin(3*pi*x);z=rectpuls(x);plot(x,y,x,z,':r');my=abs(fft(y));mz=abs(fft(z));my=my/max(my); %归一化mz=mz/max(mz); %归一化f=(0:1/length(x):1)*plot(f(1:fs/2),my(1:fs/2),f(1:fs/2),mz(1:fs/2),':r');my=20*log10(my+eps);mz=20*log10(mz+eps);plot(f(1:fs/2),my(1:fs/2),f(1:fs/2),mz(1:fs/2),':r'时域信号---&相关函数--(FFT变换)--&功率谱--(除以频率分辨率)--&功率谱密度,这叫做间接求法,可以抑制白噪声,或者通俗的说不规律信号,分析的点数越多,规律信号的信噪比越好。时域信号--(FFT变换)--&幅度谱--(平方)--&功率谱,这叫直接求法,最好不要用,除非你就想分析噪声有多大
阅读(958)|
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
历史上的今天
id:'fks_',
blogTitle:'[转] 功率信号、能量信号、功率谱、能量谱',
blogAbstract:'一、能量信号和功率信号&&&根据信号可以用能量式或功率式表示可分为能量信号和功率信号。能量信号,如各类瞬变信号。',
blogTag:'',
blogUrl:'blog/static/',
isPublished:1,
istop:false,
modifyTime:7,
publishTime:8,
permalink:'blog/static/',
commentCount:0,
mainCommentCount:0,
recommendCount:0,
bsrk:-100,
publisherId:0,
recomBlogHome:false,
currentRecomBlog:false,
attachmentsFileIds:[],
groupInfo:{},
friendstatus:'none',
followstatus:'unFollow',
pubSucc:'',
visitorProvince:'',
visitorCity:'',
visitorNewUser:false,
postAddInfo:{},
mset:'000',
remindgoodnightblog:false,
isBlackVisitor:false,
isShowYodaoAd:false,
hostIntro:'',
hmcon:'0',
selfRecomBlogCount:'0',
lofter_single:''
{list a as x}
{if x.moveFrom=='wap'}
{elseif x.moveFrom=='iphone'}
{elseif x.moveFrom=='android'}
{elseif x.moveFrom=='mobile'}
${a.selfIntro|escape}{if great260}${suplement}{/if}
{list a as x}
推荐过这篇日志的人:
{list a as x}
{if !!b&&b.length>0}
他们还推荐了:
{list b as y}
转载记录:
{list d as x}
{list a as x}
{list a as x}
{list a as x}
{list a as x}
{if x_index>4}{break}{/if}
${fn2(x.publishTime,'yyyy-MM-dd HH:mm:ss')}
{list a as x}
{if !!(blogDetail.preBlogPermalink)}
{if !!(blogDetail.nextBlogPermalink)}
{list a as x}
{if defined('newslist')&&newslist.length>0}
{list newslist as x}
{if x_index>7}{break}{/if}
{list a as x}
{var first_option =}
{list x.voteDetailList as voteToOption}
{if voteToOption==1}
{if first_option==false},{/if}&&“${b[voteToOption_index]}”&&
{if (x.role!="-1") },“我是${c[x.role]}”&&{/if}
&&&&&&&&${fn1(x.voteTime)}
{if x.userName==''}{/if}
网易公司版权所有&&
{list x.l as y}
{if defined('wl')}
{list wl as x}{/list}[转]信号功率谱和频谱的区别与联系
功率谱:信号先自相关再作FFT。
谱:信号直接作FFT。
一个信号的频谱,只是这个信号从时域表示转变为频域表示,只是同一种信号的不同的表示方式而已,&&
而功率谱是从能量的观点对信号进行的研究,其实频谱和功率谱的关系归根揭底还是信号和功率,能量等之间的关系。
频谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time
average)概念;功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。
3、功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)
4、功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。
1、功率谱可以从两方面来定义,一个是自相关函数的傅立叶变换,另一个是时域信号傅氏变换模平方然后除以时间长度。第一种定义就是常说的维纳辛钦定理,而第二种其实从能量谱密度来的。根据parseval定理,信号傅氏变换模平方被定义为能量谱,能量谱密度在时间上平均就得到了功率谱。
2、在频域分析信号分两种:
(1).对确定性信号进行傅里叶变换,分析频谱信息。
(2).随机信号的傅里叶信号不存在,转向研究它的功率谱。随机信号的功率谱和自相关函数是傅里叶变换对(即维纳辛钦定理)。功率谱估计有很多种方法
(1)信号通常分为两类:能量信号和功率信号;
(2)一般来讲,能量信号其傅氏变换收敛(即存在),而功率信号傅氏变换通常不收敛,当然,若信号存在周期性,可引入特殊数学函数(Delta)表征傅氏变换的这种非收敛性;
(3)信号是信息的搭载工具,而信息与随机性紧密相关,所以实际信号多为随机信号,这类信号的特点是状态随机性随时间无限延伸,其样本能量无限。换句话说,随机信号(样本)大多属于功率信号而非能量信号,它并不存在傅氏变换,亦即不存在频谱;
(4)若撇开搭载信息的有用与否,随机信号又称随机过程,很多噪声属于特殊的随机过程,它们的某些统计特性具有平稳性,其均值和自相关函数具有平稳性。对于这样的随机过程,自相关函数蜕化为一维确定函数,前人证明该确定相关函数存在傅氏变换;
(5)能量信号频谱通常既含有幅度也含有相位信息;幅度谱的平方(二次量纲)又叫能量谱(密度),它描述了信号能量的频域分布;功率信号的功率谱(密度)描述了信号功率随频率的分布特点(密度:单位频率上的功率),业已证明,平稳信号功率谱密度恰好是其自相关函数的傅氏变换。对于非平稳信号,其自相关函数的时间平均(对时间积分,随时变性消失而再次退变成一维函数)与功率谱密度仍是傅氏变换对;
(6)实际中我们获得的往往仅仅是信号的一段支撑,此时即使信号为功率信号,截断之后其傅氏变换收敛,但此变换结果严格来讲不属于任何“谱”(进一步分析可知它是样本真实频谱的平滑:卷积谱);
(7)对于(6)中所述变换若取其幅度平方,可作为平稳信号功率谱(密度)的近似,是为经典的“周期图法”;
(8)FFT是DFT的快速实现,DFT是DTFT的频域采样,DTFT是FT的频域延拓。人们不得已才利用DFT近似完成本属于FT的任务。若仅提FFT,是非常不专业的
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

我要回帖

更多关于 频谱密度是什么 的文章

 

随机推荐