已知x和y的值,如何求一次函数解析式的求法?

已知函数y=y1+y2,其中y1与x+1成反比例,y2与x2成正比例,且当x=1时,y=2;&x=0时,y=2.求:(1)y关于x的函数解析式;(2)当x=2时,y的值.考点:.分析:(1)根据题意设出函数关系式,把“x=0时,y=2;当x=1时,y=2”代入y与x间的函数关系式便可求出未知数的值,从而求出其解析式;(2)将x的值代入(1)中的函数解析式即可求得相应的y值.解答:解:∵y1与x+1成反比例,∴y1=1x+1(k1≠0);∵y2与x2成正比例,∴y2=k2x2(k2≠0);∴y=y1+y2=1x+1+k2x2,∵当x=1时,y=2;&x=0时,y=2,∴11+1+k22=k1,解得,1=2k2=1,∴y=+x2,即y关于x的函数解析式是:y=+x2;(2)由(1)知,y=+x2,∴根据题意知,y=+22=.点评:此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1和反比例函数解析式的一般式y=(k≠0)中,特别注意不要忽略k≠0这个条件.声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。答题:&推荐试卷&
解析质量好解析质量中解析质量差教师讲解错误
错误详细描述:
有一个运算装置,当输入值为x时,其输出值为y,且y是x的二次函数,已知输入值为-2,0,1时,相应的输出值分别为5,-3,-4.(1)求此二次函数的解析式;(2)如图所示,在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时输入值x的取值范围.
【思路分析】
(1)把三个点的坐标代入二次函数根据待定系数法求出函数的解析式即可;(2)函数值为正数,即是二次函数与与x轴的交点的上方的函数图象所对应的x的值.
【解析过程】
解:(1)设所求二次函数的解析式为y=ax2+bx+c,把(-2,5)(0,-3)(1,-4)代入得即解得故所求的解析式为:y=x2-2x-3;(2)函数图象如图所示,由图象可得,当输出值y为正数时,输入值x的取值范围是x<-1或x>3.
(1) y=x2-2x-3;(2) 由图象可得,当输出值y为正数时,输入值x的取值范围是x<-1或x>3.
本题考查一次函数的基本性质及用待定系数法求函数解析式.
电话:010-
地址:北京市西城区新街口外大街28号B座6层601
微信公众号
COPYRIGHT (C)
INC. ALL RIGHTS RESERVED. 题谷教育 版权所有
京ICP备号 京公网安备当函数图象过原点时,,即可求出的值,进而可求出抛物线的解析式,然后根据抛物线的解析式即可得出二次函数与轴的另一交点的坐标.先用配方法求出二次函数的顶点坐标,然后让纵坐标大于,纵坐标小于即可求出的取值范围.可将中得出的抛物线顶点坐标代入直线的解析式中即可求出抛物线的解析式.
由题意可知解得,,当时,,二次函数与轴另一交点的坐标为;当时,,二次函数与轴另一交点的坐标为.已知抛物线的解析式为因此抛物线的顶点坐标为由于抛物线顶点在第四象限因此可得解得.由题意可知解得.因此抛物线的解析式为.
本题考查了二次函数的性质等知识点,将二次函数的解析式化为顶点式进行求解是解题的基本思路.
3823@@3@@@@待定系数法求二次函数解析式@@@@@@255@@Math@@Junior@@$255@@2@@@@二次函数@@@@@@51@@Math@@Junior@@$51@@1@@@@函数@@@@@@7@@Math@@Junior@@$7@@0@@@@初中数学@@@@@@-1@@Math@@Junior@@$3817@@3@@@@二次函数的图象@@@@@@255@@Math@@Junior@@$255@@2@@@@二次函数@@@@@@51@@Math@@Junior@@$51@@1@@@@函数@@@@@@7@@Math@@Junior@@$7@@0@@@@初中数学@@@@@@-1@@Math@@Junior@@$3818@@3@@@@二次函数的性质@@@@@@255@@Math@@Junior@@$255@@2@@@@二次函数@@@@@@51@@Math@@Junior@@$51@@1@@@@函数@@@@@@7@@Math@@Junior@@$7@@0@@@@初中数学@@@@@@-1@@Math@@Junior@@
@@51@@7##@@51@@7##@@51@@7
第一大题,第4小题
第三大题,第8小题
求解答 学习搜索引擎 | 已知二次函数y={{x}^{2}}-(2m+1)x+平方米-1.(1)如果该函数的图象经过原点,请求出m的值及此时图象与x轴的另一交点的坐标;(2)如果该函数的图象的顶点在第四象限,请求出m的取值范围;(3)若把(1)中求得的函数的图象沿其对称轴上下平行移动,使顶点移到直线y=\frac{1}{2}x上,请求出此时函数的解析式.(2012o保定模拟)设函数f(x)=msinx+cosx(x∈R)的图象经过点.(Ⅰ)求y=f(x)的解析式,并求函数的最小正周期和最值.(Ⅱ)若,其中A是面积为的锐角△ABC的内角,且AB=2,求AC和BC的长.考点:;.专题:.分析:(Ⅰ)根据函数图象过一点,把此点的坐标代入,利用特殊角的三角函数值即可求出m的值,进而确定出f(x)的解析式,利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,利用周期公式求出f(x)的最小正周期,根据正弦函数的值域得到f(x)的最大值和最小值;(Ⅱ)根据已知的等式,代入确定出的f(x)的解析式,化简后得到sinA的值,由A的范围,利用特殊角的三角函数值即可求出A的度数,然后根据三角形的面积公式,由AB和sinA的值求出AC的长,最后由AC,AB及cosA的值,利用余弦定理即可求出BC的长.解答:解:(Ⅰ)∵函数f(x)=msinx+cosx(x∈R)的图象经过点,∴,∴m=1,(2分)∴.(4分)∴函数的最小正周期T=2π.(5分)当时,f(x)的最大值为,当时,f(x)最小值为.(7分)(Ⅱ)因为,即,∴,∵A是面积为的锐角△ABC的内角,∴.(10分)∵△ABC=12ABoACsinA=323,∴AC=3.(12分)由余弦定理得:BC2=AC2+AB2-2oABoACcosA=7,∴.(14分)点评:此题考查了三角函数的恒等变形,余弦定理,三角形的面积公式,以及正弦函数的周期及值域.熟练掌握三角函数的恒等变形是解本题的关键.声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。答题:★★★★★推荐试卷
解析质量好解析质量中解析质量差当前位置:
>>>已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点..
已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点A(-1,b),与y轴相交于点B,且∠ABO的余切值为3.(1)求点B的坐标;(2)求这个函数的解析式;(3)如果这个函数图象的顶点为C,求证:∠ACB=∠ABO.
题型:解答题难度:中档来源:不详
(1)根据题意,得b=1+b+c.∴c=-1.∴B(0,-1);(2)过点A作AH⊥y轴,垂足为点H.∵∠ABO的余切值为3,∴cot∠ABO=BHAH=3.而AH=1,∴BH=3.∵BO=1,∴HO=2.∴b=2.∴所求函数的解析式为y=x2-2x-1;(3)由y=x2-2x-1=(x-1)2-2,得顶点C的坐标为(1,-2).∴AC=25,AB=10,BC=2,AO=5,BO=1.∴ACAB=ABAO=BCBO=2.∴△ABC∽△AOB.∴∠ACB=∠ABO.
马上分享给同学
据魔方格专家权威分析,试题“已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点..”主要考查你对&&求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点..”考查相似的试题有:
201546148593921844893277919423908053

我要回帖

更多关于 已知导数求原函数 的文章

 

随机推荐