同一种质粒酶切电泳DNA以3种不同构型存在电泳时迁移速率是

您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
质粒DNA的提取与酶切.doc4页
本文档一共被下载:
次 ,您可免费全文在线阅读后下载本文档
文档加载中...广告还剩秒
需要金币:100 &&
质粒DNA的提取与酶切.doc
你可能关注的文档:
··········
··········
实验六:质粒DNA的提取与酶切
姓名:胡艳敏 学号:座机电话号码0515041 组:第六组
一、实验目的: (1)通过本次实验学习和掌握碱裂解法提取质粒; (2)通过本次实验学习琼脂糖凝胶电泳检测DNA的方法和技术;
实验原理: (1)、质粒DNA的提取:
质粒是一类存在于几乎所有细菌中染色体之外(细胞质中)呈游离状态的双链、闭环的DNA分子。质粒通常携带有染色体上所不存在的能够表达产生抗生素、耐受重金属等重要性状的基因。细菌质粒的大小范围从1kb至200kb以上不等,且拥有自己的复制起始位点,可不依赖于染色体而进行独立自主复制。一些小的质粒利用宿主细胞的酶进行复制,而较大的质粒则自身携有复制与编码的有关酶。一般分离质粒DNA的方法都包括3个步骤:
①培养细菌,使质粒DNA大量扩增; ②收集和裂解细菌; ③分离和纯化质粒DNA。
分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。
、碱裂解法提取大肠杆菌质粒DNA的原理: 碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA在拓扑学上的差异来分离质粒DNA。
在pH值介于12.0~12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,共价闭合环状的质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确;而线性的染色体DNA的两条互补链彼此已完全分开,因复性较缓慢且不准确而相互缠绕形成不溶性网状
正在加载中,请稍后...质粒提取与纯化部分
13:54:46&&&来源:&&&评论:&&
[质粒提取与纯化部分]一、 填空1.质粒提取中细菌的裂解可采用多种方法,包括:非离子型或离子型去圬剂,有机溶剂,碱或加热处理。2.用于分离质粒DNA的细菌培养浓度达到0.8×109细胞/ml时,即可通过离心收集菌体。收集菌体使用定角转子,离心的速度以8000r/min为宜。3.在分离质粒DNA的菌体培养过程中,加入氯霉素有两个好处:可以扩增质粒DNA;抑制了…… [本文关键词:质粒 蛋白质 溶菌酶 染色体 核酸]…
1.质粒提取中细菌的裂解可采用多种方法,包括:非离子型或离子型去圬剂,有机溶剂,碱或加热处理。
2.用于分离质粒DNA的细菌培养浓度达到0.8×109细胞/ml时,即可通过离心收集菌体。收集菌体使用定角转子,离心的速度以8000r/min为宜。
3.在分离质粒DNA的菌体培养过程中,加入氯霉素有两个好处:可以扩增质粒DNA;抑制了菌体的数量,有利于裂解。
4.常使用的质粒纯化方法都利用了质粒DNA相对较小和共价闭合环状两个性质。
5.由于不同构型的DNA插入EB的量不同,它们在琼脂糖凝胶电泳中的迁移率也不同,超螺旋的共价闭合环状结构的质粒DNA(SC)的泳动速度最快,一条链断裂的开环状质粒DNA(OC)泳动速度最慢,二条链断裂的线性DNA(L)居中,通过凝胶电泳和EB染色的方法可将不同构型的DNA分别开来。
6.超离心法纯化质粒DNA时,选用CsCl作介质的优点是:CsCl与不同DNA起反应;CsCl可以自动形成密度梯度,从而使不同分子量的DNA分子得以分开。
7.SDS是分离DNA时常用的一种阴离子除垢剂,它有四个作用:溶解膜蛋白及脂肪,从而使细胞膜破裂;溶解核膜和核小体,使其解聚,将核酸释放出来;对RNase、Dnase有一定的抑制作用;SDS能够与蛋白质结合形成R1-O-SO3-…R2+-蛋白质复合物,使蛋白质变性沉淀。
8.碱裂解法所用溶液Ⅰ、Ⅱ、Ⅲ的体积比为:2:4:3
9.质粒提取中溶液Ⅱ的主要成分为SDS和NaOH。
10. 溶液Ⅲ中钾是3mol/L,乙酸根是5mol/L
11. LiCl可沉淀大量蛋白质和高分子RNA。
12. 1OD260=50μg质粒DNA/ml。
13. 在碱变形法提取质粒DNA实验中,聚乙二醇用于沉淀质粒DNA。
14. 残留在DNA样品中的酚可抑制酶的活性。
15. 质粒DNA提取中酚的pH值范围是pH7.8~pH8.0。
16. 乙醇沉淀核酸的沉淀混合液中常用的单价阳离子的类型有:乙酸铵、氯化钠和乙酸钠。
17. SSCP电泳方式为非变性聚丙烯酰胺凝胶电泳。
18. SSCP是依据点突变引起单链DNA分子立体构象的改变来实现电泳分离的。
19. 影响SSCP重复性的主要因素为电泳的电压和温度。
20. SSCP中使DNA双链起变性作用的是:甲酰胺
21. 点突变对SSCP检出率的影响不仅仅取决于该点在DNA链上的位置,更取决于该位置对维持立体构象作用的大小。
1.质粒提取中溶液Ⅱ的主要成分为:B
A. SDS和EDTA
B. SDS和NaOH
C. EDTA和NaOH
D. SDS和冰乙酸
2.分离质粒DNA时,用蔗糖的目的是:B
A. 抑制核酸酶的活性
B. 保护DNA,防止断裂
C. 加速蛋白质变性
D. 有利于细胞破碎
3.关于碱解法分离质粒DNA,下面哪一种说法不正确?:D
A. 溶液Ⅰ的作用是悬浮菌体
B. 溶液Ⅱ的作用是使DNA变性
C. 溶液Ⅲ的作用是使DNA复性
D. 质粒DNA分子小,所以没有变性,染色体变性后不能复性
4.质粒DNA提取中酚的pH值范围:D
A. pH6.5~pH7.0
B. pH8.0~pH8.5
C. pH6.8~pH7.0
D. Ph7.8~pH8.0
5.CsCl-EB密度梯度离心法纯化质粒DNA的原理是:C
A. 氯化铯可以较多地插入到线状DNA中去
B. 氯化铯可以较多地插入到SC DNA中去
C. EB可以较多地插入到线状DNA中去
D. EB可以较多地插入到SC DNA中去
6.同一种质粒DNA,以三种不同的形式存在,电泳时,它们的迁移速率是:B
A. OC DNA SC DNA L DNA
B. SC DNA L DNA OC DNA
C. L DNA OC DNA.SC DNA
D. SC DNA OC DNA L DNA
7.用碱法分离质粒DNA时,染色体DNA之所以可以被除去,是因为:C
A. 染色体DNA断成了碎片
B. 染色体DNA分子量大,而不能释放
C. 染色体变性后来不及复性
D. 染色体未同蛋白质分开而沉淀
8.1OD260相当于每毫升质粒DNA:A
9.加入溶液Ⅲ后出现的白色絮状沉淀不包括:A
A. 质粒DNA和小分子量RNA
B. 染色体DNA和高分子量RNA
C. 钾离子和SDS
D. 蛋白质和细胞膜
10. SSCP电泳方式为:D
A. 普通琼脂糖凝胶电泳
B. 低熔点琼脂糖凝胶电泳
C. 变性聚丙烯酰胺凝胶电泳
D. 非变性聚丙烯酰胺凝胶电泳
11. SSCP中使DNA双链起变性作用的是:B
D. Tris-HCl
12. SSCP分离单链DNA片段是依据:B
A. 单链DNA分子量大小
B. 单链DNA片段空间构象的立体位阻大小
C. 单链DNA带电量的大小
D. 单链DNA分子量和带电量的大小
1.迄今发现的质粒都是环状的。(错)
2.质粒DNA提取时,溶液Ⅱ需新鲜配置。(对)
3.如果溶菌酶溶液中pH值低于8.0,溶菌酶就不能有效发挥作用。(对)
4.碱法和煮沸法分离质粒DNA的原理是不同的。(错)
5.CsCl-EB密度梯度离心法纯化SC DNA原理是根据EB可以较多地插入到SC DNA中,因而沉降速度较快。(错)
6.酚法和碱法分离质粒DNA都要用溶菌酶破壁,但碱法用的溶菌酶的浓度要高。(对)
7.氯霉素扩增DNA时,加氯霉素的时间是重要的,因为加得太早,菌数不够,加入时间过迟,菌龄过老,容易自溶。(对)
8.碱法和煮沸法分离质粒DNA的原理是不同的。(错)
9.酚法和碱法分离质粒DNA都要用溶菌酶破壁,但碱法用的溶菌酶的浓度要高。(对)
10. SSCP对长链DNA或RNA的点突变检出率要比短链的高。(错)
11. SSCP分析中非变性PAG电泳分离不能反映出分子量的大小。(对)
12. SSCP可以检测出所有的单点突变。(错)
13. 点突变对SSCP检出率的影响取决于该点在DNA链上的位置,点突变在DNA链中部要比在近端部容易被SSCP检测出来。(错)
1.简述溶液Ⅰ、Ⅱ、Ⅲ所包含成分及生化作用原理
溶液Ⅰ含葡萄糖和EDTA,葡萄糖能增加溶液的黏度,防止DNA受机械作用而降解。EDTA可螯合Mg2+、Ca2+等金属离子,抑制脱氧核糖核酸酶对DNA的降解作用(Dnase作用时需要一定的金属离子作辅基),另外,EDTA的存在,有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度的环境。
溶液Ⅱ含NaOH和SDS,核酸在pH大于5小于9的溶液中是稳定的,但当pH大于12或小于3时,就会引起双键之间氢键的解离而变性。在溶液Ⅱ中的NaOH浓度为0.2N,加入抽提液液时,该系统的pH就高达12.6,因而促使染色体DNA与质粒的变性。SDS是离子型表面活性剂,它主要功能有溶解细胞膜上的脂肪与蛋白,因而溶解而破坏细胞膜;解聚细胞中的;SDS能与蛋白质结合成为R1-O-SO3-…R2+-蛋白质的复合物,使蛋白质变性而沉淀下来。但是SDS能抑制核糖的作用,所以在以后的提取过程中,必须把它去除干净,防止在下一步操作中(用Rnase去除RNA时)受到干扰。
溶液Ⅲ是NaAc-Hac的缓冲液(pH4.8)。用pH4.8的NaAc溶液是为了把pH12.6的抽提液pH调回中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3MnaAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白质复合物凝聚而沉淀之。前者是因为中和核酸上的电荷,减少相斥力而互相聚合,后者是因为钠盐与SDS-蛋白质复合物作用后,能形成溶解度较小的钠盐形式复合物,使沉淀更完全。
2.小量制备质粒DNA时发现质粒DNA不能被限制酶所切割,分析可能原因及解决办法。
由于从细菌沉淀或从核酸沉淀中去除所有上清液时注意不够,没有去除干净导致。大多数情况下,用酚:氯仿对溶液进行抽提可以去除小量备物中的杂质,如果总是依然存在,可用离心柱纯化DNA。
3.溶菌酶是破碎细菌的有效方法。但有些细菌的孢子对溶菌酶不敏感,应该如何处理?
添加DTT、β-巯基乙醇,或8.0mol/L的尿素等增加敏感性。
4.从核酸溶液中去除蛋白质的标准方法及原理。
方法是先用酚:氯仿抽提,然后再用氯仿抽提。原理:使用两种不同的有机溶剂去除蛋白质比用单一有机溶剂效果更佳。继而用氯仿抽提可除去核酸制品中残量酚。(此外,酚虽能有效地使蛋白质变性,却不能完全抑制RNA酶的活性,它还能溶解带有长poly(A)段的RNA分子。使用酚:氯仿:异戊醇(25:24:1)混合液可以使这两个问题迎刃而解,)
5.在用乙醇沉淀DNA时,为什么一定要加NaAc或NaCl至最终浓度达0.1-0.25M?
在pH为8左右的DNA溶液中,DNA分子是带负电荷的,加一定浓度的NaAc或NaCl,使Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷排斥力,易于互相聚合而形成DNA钠盐沉淀。当加入的盐溶液浓度太低时,只有部分DNA形成DNA钠盐而聚合,这样就造成DNA沉淀不完全。当加入的盐溶液浓度太高时,其效果也不好,在沉淀的DNA中,由于过多的盐杂质存在,影响DNA的酶切等反应,必须要进行洗涤或重沉淀。
6.LiCl在质粒DNA提取中的作用是什么?
沉淀大量蛋白质和高分子RNA。
7.简述PCR-SSCP基本过程。
1) PCR扩增靶DNA;
2) 将特异的PCR扩增产物变性,而后快速复性,使之成为具有一定空间结构的单链DNA分子;
3) 将适量单链DNA进行非变性聚丙烯酰胺凝胶电泳;
4) 最后通过放射性自显影、银染或溴化乙锭显色分析结果,若发现单链DNA带迁移率与正常对照的相比发生改变,就可以判定该链构象发生改变,进而推断DNA片段中有碱基突变。
8.简述RNA-SSCP的基本原理。
RNA有着更多精细的二级和三级构象,这些构象对单个碱基的突变很敏感,从而提高了检出率,其突变检出率可达90%以上。另外,RNA不易结合成双链,因此可以较大量的进行电泳,有利于用溴化乙锭染色。
9.SSCP图谱一般是二条单链DNA带,有时可能只呈现一条SSDNA带或三条以上的原因是什么?
主要是由于两条单链DNA之间存在相似的立体构象,有时三条以上的SSCP图谱是由于野型DNA片段和突变型DNA片段共同存在的结果。
10. 分子量相同的超螺旋环状、带切口环状和线状DNA在凝胶中迁移率大小顺序是什么?
超螺旋环状DNA迁移最快,其次为线状DNA,最慢为带切口环状DNA。
11. 影响DNA迁移率的因素有哪些?
影响DNA迁移率的因素有:DNA分子的大小,糖浓度,DNA的构象,所加电压,温度,嵌入染料的存在和电泳的组成。
将本文分享到下面的网站:
相关热词搜索:
[质粒提取与纯化部分]延伸阅读:
频道总排行
频道本月排行丁香客App是丁香园社区的官方应用,聚合了丁香园论坛和丁香客的精彩内容。医生可通过丁香客App浏览论坛,也可以在这个医生群集的关系网络中分享和互动,建立更广泛的学术圈子。
扫描二维码下载
今日:0 | 主题:282408 | & 收藏本版
每发1个新帖可以获得0.5个丁当奖励
重组质粒的连接、转化及筛选
重组质粒的连接、转化及筛选
分享到哪里?
这个帖子发布于9年零339天前,其中的信息可能已发生改变或有所发展。
外源DNA片段和线状质粒载体的连接外源DNA片段和线状质粒载体的连接,也就是在双链DNA5'磷酸和相邻的3'羟基之间 形成的新的共价链。如质粒载体的两条链都带5'磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口,当杂本导入感受态细胞后可被修复。相邻的5'磷酸和3'羟基间磷酸二酯键的形成可在体外由两种不同的DNA连接酶催化,这两种酶就是大肠杆菌DNA连接酶和T4噬菌体DNA连接酶。实际上在有克隆用途中,T4噬菌体DNA连接酶都是首选的用酶。这是因为在下沉反应条件下,它就能有效地将平端DNA片段连接起来。  DNA一端与另一端的连接可认为是双分子反应,在标准条件下,其反应速度完全由互相匹配的DNA末端的浓度决定。不论末端位于同一DNA分子(分子内连接)还是位于不同分子(分子间连接),都是如此。现考虑一种简单的情况,即连接混合物中只含有一种DNA,也就是用可产生粘端的单个限制酶切割制备的磷酸化载体DNA。在瓜作用的底物。如果反应中DNA浓度低,则配对的两个末端同一DNA分子的机会较大(因为DNA分子的一个末端找到同一分子的另一末端的概率要高于找到不同DNA分子的末端的概率)。这倦,在DNA浓度低时,质粒DNA重新环化将卓有成效。如果连接反应中DNA浓度有所增高,则在分子内连接反应发生以前,某一个DNA分子的末端碰到另一DNA分子末端的可能性也有所增大。因此在DNA浓度高时,连接反的初产物将是质粒二聚体和更大一些的寡聚体。Dugaiczyk等(1975;同时参见Bethesda Res,Lab.出版的Focus第2卷,第2、3期合刊)从理论上探讨了DNA浓度对连接产物性质的影响。简而言之,环化的连接产物与多联体连接产物的比取决于两个参数:j和i。j是DNA分子的一个末端在同一分子的另一末端附近的有效浓度,j的数值是根据如下一种假设作出的:沉吟液中的DNA呈随机卷曲。这样,j与DNA分子的长度成反比(因为DNA越长,某一给定分子的两末端的越不可能相互作用),因此j对给定长度的DNA分子来说是一个常数,与DNA深度无关。j=[3/(3πlb0)]3/2其中l是DNA长度,以cm计,b 是随机卷曲的DNA区段的长度。b的值以缓冲液的离子强度为转移,而后者可影响DNA的刚度。
i是溶液中所有互补末端的深度的测量值,对于具有自身互补粘端的双链dna而言,i=2NoMx10-3末端/ml这里No是阿佛伽德罗常数,M是DNA的摩尔浓度(单位:mol/L)。理论上,当j=i时,给定DNA分子的一个末端与同一分子的另一末端,以及与不同分子的末端相接触的可能性相等。因而在这样的条件下,在反应的初始阶段中,环状分子与多联体分子的生成速率相等。而当j&i时,有利于重新环化;当i&j,则有利于产生多联体。图1.9显示了DNA区段的大小与连接反应混合物中j:i之比分别为0.5、1、2和5时所需DNA浓度之间关系(Dugaiczyk等, 1985)。 现在考虑如下的连接反应混合物:其中除线状质粒之外,还含有带匹配末端的外源DNA片段。对于一个给定的连接混合物而言,产生单体环状重组基因组的效率不仅受反应中末端的绝对浓度影响, 而且还受质粒和外源DNA末端的相对浓度的影响。当i是j的2-3倍(即末端的绝对浓度足以满足分子间连接的要求,而又不致引起大量寡聚体分子的形成时)外源DNA末端浓度的2倍时,有效重组体的产量可达到最大。这些条什下,连接反应终产物的大约40%都是由单体质粒与外源DNA所形成的嵌合体。当连接混合物中线瘃质粒的量恒定(j:i=3)而带匹配末端的外源DNA的量递增时,这种嵌合体在连接反应之末的理论产量。涉及带粘端的线状磷酸化质粒DNA的连接反应应包含:1)足量的载体DNA,以满足j:i&1和j:i&3。对一个职pUC18一般大小的质粒,这意味着连接反应中应含有载体DNA为20-60μg/ml。2)未端浓度等于或稍高于载体DNA的外源DNA,如外源DNA浓度比载体低得多,在效连接产物的数量会很低,这样就很难别小部分带重组抽粒的转化菌落。这种情况下,可考虑采用一些步骤来减少带非重组质粒的背景菌落。如用磷酸酶处理线状质粒DNA或发迹克隆策略以便通过定向克隆的方法构建重组质粒。
(二)粘端连接1)用适当的限制酶消化质粒和外源DNA。如有必要,可用凝胶电泳分离片段并(或)用碱性磷酸酶处理质粒DNA。通过酚:氯仿抽提和乙沉淀来纯化DNA,然后用TE(pH7.6)溶液使其浓度为100/ml。2)按如下所述设立连接反应混合物:a.将0.1μl载体DNA转移到无菌微量离心管中,加等摩尔量的外源DNA。b.加水至7.5μl,于45℃加温5分钟以使重新退炎的粘端解链,将混合物冷却到0℃。c.加入:10xT4噬菌体DNA连接酶缓冲液 1μlT4噬菌体NDA连接酶 0.1Weiss单位5mmol/L ATP 1μl于16℃温育1-4小时10xT4噬菌体DNA连接酶缓冲液200mmol/L同Tris.Cl(pH7.6)50mmol/K MgCl250mmol/L二硫苏糖醇500μg/ml牛血清白蛋白(组分V.Sigma产品)(可用可不用)该缓训液应分装成小份,贮存于-20℃。
另外,再设立两个对照反应,其中含有(1)只有质粒载体;(2)只有外源DNA片段。如果外源DNA量不足,每个连接反应可用50-100ng质粒DNA,并尽可能多加外源DNA,同时保持连接反应体积不超过10μl。可用至少3种不同方法来测定T4噬菌体DNA连接酶的活性。大多数制造厂商(除 New England Biolabs公司外)现在都用Weiss等,11968)对该酶进行标化。1个Weiss单位是指在37℃下20分钏内催化1mmol32P从焦磷酸根置换到[γ,β-32P]ATP所需酶时,1个Weiss单位相当于0.2个用外切核酸酶耐受试验来定义的单位(Modrich和Lehman,1970)或者60个粘端单位(如New England Biolabs公司所定义)。因此,0.015Weiss单位的T4噬菌体DNA连接酶在16℃下30分钟内可使50%的λ噬菌体HindⅢ片段(5μg)得以连接。在本书中,T4噬菌体DNA连接酶一律用 Weiss单位表示。\par 目前提供的T4噬菌体DNA连接酶均为浓溶液(1-5单位/μl),可用20mmol/L Tris.Cl (pH7.6)、60mmol/L KCl、5mmol/L二硫苏糖醇、500μg/ml牛血清白蛋白、50%甘稀释成100单位/ml的浓度置存。处于这种浓度并在这种缓冲液中的T4噬体DNA连接酶于-20℃保存3个月可保持稳定。3)每个样品各取1-2μl转化大肠杆菌感受态细胞。 (三)平端DNA连接  T4噬菌体DNA连接酶不同于大肠杆菌DNA连接酶,它可以催化平端DNA片段的连接(Sgaramella和Khorana,1972; Sgaramella和Ehrlich,1978),由于DNA很容易成为平端,所以这是一个极为有用的酶学物性。有了这样的物性,才能使任何DNA分子彼此相连。然而,相对而言,平端连接是低效反应,它要求以下4个条件:1)低浓度(0.5mmol/L)的ATP(Ferretti和Sgaranekka,1981)。2)不存在亚精胺一类的多胺。3)极高浓度的连接酶(50Weiss单位.ml)。4)高浓度的平端。1.凝聚剂  在反应混合物中加入一些可促进大分子群聚作用并可导致DNA分子凝聚成集体的物质,如聚乙二醇(Pheiffer和Zimmerman,1983; Zimmerman和Pheiffer,1983;ZimmermanT Harrison,1985)或氯化六氨全高钴(Rusche和Howard- Flanders,1985),可以使如何取得适当浓度的平端DNA的总是迎刃而解。在连接反应中,这些物质具有两作用:1)它们可使平端DNA的连接速率加大1-3个数量级,因此可使连接反应在酶DNA浓度不高的条件下进行。2)它们可以改变连接产物的分布,分子内连接受到抑制,所形成的连接产物一律是分子间连接的产物。这样,即使在有利于自身环化(j:i=10)的DNA浓度下,所有的DNA产物也将是线状多聚体。\par 在设立含凝聚剂的连接反应时,下列资料可供参考。(1)聚乙二醇(PEG8000)1)用去离子水配制的PEG8000贮存液(40%)分装成小份,冰冻保存,但加入连接反应混合物之前应将其融化并使其达到室温。在含15% PEG 8000的连接反应混合物中,对连接反刺激效应最为显著。除PEG 800和T4噬菌体DNA连接酶以外,其他所有连接混合物的组分应于0℃混合,然后加适当体积的PEG 8000(处于室温),混匀,加酶后于20℃进行温育。2)连接混合物中含0.5mmol/L ATP和5mmol/L MgCl2时对连接反应的刺激效应最为显著,甚至ATP浓度略有增加或MgCl2浓度略有降低,都会严重降低刺激的强度(Pheiffer和Zimmerman,1983)。3)浓度为15%的PEG 8000可刺激带粘端的DNA分子的连接效率提高至原来的10-100倍,反应的主产物是***的多联体。4)PEG 8000可刺激短至8个核苷酸的合成寡聚物的平端连接,在这一方面,它与氯化六氨合高钴有所不同。(2)氯化六氨合高钴1)氯化六氨合高钴可用水配成10mmol/L贮存液贮存于-20℃,它对连接反应的刺激具有高度的浓度信赖性。当连接反应混合物中盐深度为1.0- 1.5μmol/L时,其刺激作用最大。氯化六氨合高钴可使平端连接的效率大约提高到原来的50W部,但只能使端连接的效率提高到原来的5倍(Rusche和Howard-Flanders,1985)。2)在单价阳离子(30mmol/L KCl)存在下,它对平端连接仍有一定的刺激作用,但此时连接产物的分布有所改变。连接产物不再是清一色的分子间连接产物,相反,环状DNA将点尽优势。3)与PEG 8000不同,氯化六氨合高钴不能显著提高合成寡核苷酸的连接速率。
回复:重组质粒的连接、转化及筛选
分享到哪里?
重组质粒的转化及筛选第一节 概 述   质粒具有稳定可靠和操作简便的优点。如果要克隆较小的DNA片段(<10kb)且结构简单,质粒要比其它任何载体都要好。在质粒载体上进行克隆,从原理上说是很简单的,先用限制性内切酶切割质粒DNA和目的DNA片段, 然后体外使两者相连接, 再用所得到重组质粒转化细菌,即可完成。但在实际工作中, 如何区分插入有外源DNA的重组质粒和无插入而自身环化的载体分子是较为困难的。通过调整连接反应中外源DNA片段和载体DNA的浓度比例,可以将载体的自身环化限制在一定程度之下,也可以进一步采取一些特殊的克隆策略,如载体去磷酸化等来最大限度的降低载体的自身环化,还可以利用遗传学手段如α互补现象等来鉴别重组子和非重组子。  外源DNA片段和质粒载体的连接反应策略有以下几种:   1、带有非互补突出端的片段 用两种不同的限制性内切酶进行消化可以产生带有非互补的粘性末端,这也是最容易克隆的DNA片段,一般情况下,常用质粒载体均带有多个不同限制酶的识别序列组成的多克隆位点,因而几乎总能找到与外源DNA片段末端匹配的限制酶切位点的载体,从而将外源片段定向地克隆到载体上。也可在PCR扩增时,在DNA片段两端人为加上不同酶切位点以便与载体相连。  2、带有相同的粘性末端 用相同的酶或同尾酶处理可得到这样的末端。 由于质粒载体也必须用同一种酶消化,亦得到同样的两个相同粘性末端,因此在连接反应中外源片段和质粒载体DNA均可能发生自身环化或几个分子***形成寡聚物, 而且正反两种连接方向都可能有。所以,必须仔细调整连接反应中两种DNA 的浓度, 以便使正确的连接产物的数量达到最高水平。还可将载体DNA的5'磷酸基团用碱性磷酸酯酶去掉, 最大限度地抑制质粒DNA的自身环化。带5' 端磷酸的外源DNA片段可以有效地与去磷酸化的载体相连, 产生一个带有两个缺口的开环分子,在转入E. coli受体菌后的扩增过程中缺口可自动修复。
  3、带有平末端 是由产生平末端的限制酶或核酸外切酶消化产生,或由DNA聚合酶补平所致。由于平端的连接效率比粘性末端要低得多,故在其连接反应中,T4 DNA连接酶的浓度和外源DNA及载体DNA浓度均要高得多。通常还需加入低浓度的聚乙二醇(PEG 8000)以促进DNA分子凝聚成聚集体的物质以提高转化效率。特殊情况下,外源DNA分子的末端与所用的载体末端无法相互匹配,则可以在线状质粒载体末端或外源DNA片段末端接上合适的接头(linker)或衔接头 (adapter)使其匹配, 也可以有控制的使用E. coli DNA聚合酶Ⅰ的klenow大片段部分填平3'凹端,使不相匹配的末端转变为互补末端或转为平末端后再进行连接。   本实验所使用的载体质粒DNA为pBS,转化受体菌为E. coli DH5α菌株。由于pBS上带有Ampr 和lacZ基因,故重组子的筛选采用Amp抗性筛选与α-互补现象筛选相结合的方法。   因pBS带有Ampr 基因而外源片段上不带该基因,故转化受体菌后只有带有pBS DNA的转化子才能在含有Amp的LB平板上存活下来;而只带有自身环化的外源片段的转化子则不能存活。此为初步的抗性筛选。   pBS上带有β-半乳糖苷酶基因(lacZ)的调控序列和β-半乳糖苷酶N端146个氨基酸的编码序列。这个编码区中插入了一个多克隆位点,但并没有破坏lacZ的阅读框架,不影响其正常功能。E. coli DH5α菌株带有β-半乳糖苷酶C端部分序列的编码信息。在各自独立的情况下,pBS和 DH5α编码的β-半乳糖苷酶的片段都没有酶活性。但在pBS和DH5α融为一体时可形成具有酶活性的蛋白质。这种lacZ基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酸阴性突变体之间实现互补的现象叫α-互补。由α-互补产生的Lac+ 细菌较易识别,它在生色底物X- gal(5-溴-4氯-3-吲哚-β-D-半乳糖苷)下存在下被IPTG(异丙基硫代-β-D-半乳糖苷)诱导形成蓝色菌落。当外源片段插入到pBS质粒的多克隆位点上后会导致读码框架改变, 表达蛋白失活, 产生的氨基酸片段失去α-互补能力, 因此在同样条件下含重组质粒的转化子在生色诱导培养基上只能形成白色菌落。在麦康凯培养基上,α-互补产生的Lac+细菌由于含β-半乳糖苷酶,能分解麦康凯培养基中的乳糖,产生乳酸,使pH下降,因而产生红色菌落,而当外源片段插入后,失去α-互补能力,因而不产生β-半乳糖苷酶,无法分解培养基中的乳糖,菌落呈白色。由此可将重组质粒与自身环化的载体DNA 分开。此为α-互补现象筛选。 第二节 材料、设备及试剂   一、 材料   外源DNA片段: 自行制备的带限制性末端的DNA溶液,浓度已知; 载体DNA: pBS质粒(Ampr ,lacZ),自行提取纯化,浓度已知; 宿主菌: E. coli DH5α,或JM系列等具有α-互补能力的菌株。   二、 设备   恒温摇床,台式高速离心机,恒温水浴锅, 琼脂糖凝胶电泳装置, 电热恒温培养箱,电泳仪无菌,工作台, 微量移液枪,eppendorf管。   三、 试剂  1、连接反应缓冲液(10×):0.5mol/L Tris·Cl (pH7.6),100mol/L MgCl2,100mol/L 二硫苏糖醇 (DTT)(过滤灭菌),500μg/ml 牛血清清蛋白(组分V.Sigma 产品)(可用可不用),10mol/L ATP(过滤灭菌)。   2、T4 DNA连接酶(T4 DNA ligase);购买成品。  3、X-gal储液(20mg/ml): 用二甲基甲酰胺溶解X-gal配制成20mg/ml的储液, 包以铝箔或黑纸以防止受光照被破坏, 储存于-20℃。  4、IPTG储液(200mg/ml): 在800μl蒸馏水中溶解200mg IPTG后,用蒸馏水定容至1ml,用0.22μm滤膜过滤除菌,分装于eppendorf管并储于-20℃。   5、麦康凯选择性培养基(Maconkey Agar):取52g麦康凯琼脂加蒸馏水1000ml,微火煮沸至完全浴解,高压灭菌,待冷至60℃左右加入Amp储存液使终浓度为50mg/ml,然后摇匀后涂板。   6、含X-gal和IPTG的筛选培养基:在事先制备好的含50μg/ml Amp的LB平板表面加40ml X-gal储液和4μlIPTG储液,用无菌玻棒将溶液涂匀,置于37℃下放置3-4小时,使培养基表面的液体完全被吸收。  7、感受态细胞制备试剂: 见第三章。   8、煮沸法快速分离质粒试剂: 见第一章。  9、质粒酶及电泳试剂: 见第二章。 第三节 操作步骤   一、 连接反应   1、取新的经灭菌处理的0.5ml eppendorf管, 编号。   2、将0.1μg载体DNA转移到无菌离心管中,加等摩尔量(可稍多)的外源DNA片段。   3、加蒸馏水至体积为8μl,于45℃保温5分钟,以使重新退火的粘端解链。将混和物冷却至0℃。  4、加入10×T4 DNA ligase buffer 1μl, T4 DNA ligase 0.5μl, 混匀后用微量离心机将液体全部甩到管底,于16℃保温8-24小时。   同时做二组对照反应,其中对照组一只有质粒载体无外源DNA;对照组二只有外源DNA片段没有质粒载体。  二、 E. coli DH5α感受态细胞的制备及转化  每组连接反应混和物各取2μl转化E. coli DH5α感受态细胞。具体方法见第三章。  三、 重组质粒的筛选   1、每组连接反应转化原液取100μl用无菌玻棒均匀涂布于筛选培养基上,37℃下培养半小时以上,直至液体被完全吸收。   2、倒置平板于37℃继续培养12-16小时,待出现明显而又未相互重叠的单菌落时拿出平板。   3、放于4℃数小时,使显色完全(此步麦康凯培养基不做)。   不带有pBS质粒DNA的细胞,由于无Amp抗性,不能在含有Amp的筛选培养基上成活。带有pBS载体的转化子由于具有β-半乳糖苷酶活性,在麦康凯筛选培养基上呈现为红色菌落。在X-gal和ITPG培养基上为蓝色菌落。带有重组质粒转化子由于丧失了β-半乳糖苷酶活性,在麦康凯选择性培养基和x -gal和ITPG培养基上均为白色菌落。   四、 酶切鉴定重组质粒   用无菌牙签挑取白色单菌落接种于含Amp 50μg/ml的 5ml LB液体培养基中,37℃下振荡培养12小时。使用煮沸法快速分离质粒DNA直接电泳,同时以煮沸法抽提的pBS质粒做对照,有插入片段的重组质粒电泳时迁移率较pBS慢。再用与连接未端相对应的限制性内切酶进一步进行酶切检验。还可用杂交法筛选重组质粒。  [注意] 1、DNA连接酶用量与DNA片段的性质有关,连接平齐末端,必须加大酶量,一般使用连接粘性末端酶量的10-100倍。   2、在连接带有粘性末端的DNA片段时,DNA浓度一般为2-10mg/ml,在连接平齐末端时,需加入DNA浓度至100-200mg/ml。   3、连接反应后,反应液在0℃储存数天,-80℃储存2个月,但是在-20℃冰冻保存将会降低转化效率。   4、粘性末端形成的氢键在低温下更加稳定,所以尽管T4 DNA连接酶的最适反应温度为37℃,在连接粘性末端时,反应温度以10-16℃为好,平齐末端则以15-20℃为好。   5、在连接反应中,如不对载体分子进行去5'磷酸基处理,便用过量的外源DNA片段(2-5倍),这将有助于减少载体的自身环化,增加外源DNA和载体连接的机会。   6、麦康凯选择性琼脂组成的平板,在含有适当抗生素时,携有载体DNA的转化子为淡红色菌落,而携有带插入片段的重组质粒转化子为白色菌落。该产品筛选效果同蓝白斑筛选,且价格低廉。但需及时挑取白色菌落,当培养时间延长,白色菌落会逐渐变成微红色,影响挑选。   7、X-gal是5-溴-4-氯-3-吲哚-b-D-半乳糖(5-bromo-4-chloro-3-indolyl-b-D- galactoside)以半乳糖苷酶(b-galactosidase)水解后生成的吲哚衍生物显蓝色。IPTG是异丙基硫代半乳糖苷(Isopropylthiogalactoside),为非生理性的诱导物,它可以诱导lacZ的表达。   8、在含有X-gal和IPTG的筛选培养基上,携带载体DNA的转化子为蓝色菌落,而携带插入片段的重组质粒转化子为白色菌落,平板如在37℃培养后放于冰箱3-4小时可使显色反应充分,蓝色菌落明显。
关于丁香园

我要回帖

更多关于 pet28a质粒图谱 的文章

 

随机推荐