千兆猫和普通猫的区别的千与数学中的千米的区别

超宽带无线通信中扩频调制技术的研究_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
&&¥2.00
&&¥0.50
&&¥2.00
&&¥0.50
&&¥2.00
喜欢此文档的还喜欢
超宽带无线通信中扩频调制技术的研究
阅读已结束,如果下载本文需要使用
想免费下载本文?
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢查看: 7725|回复: 1
人教版三年级数学上册第一单元《千米的认识》动画教学录像名师辅导视频
人教版三年级数学上册第一单元《千米的认识》动画教学录像名师辅导视频特级教师上课实录、课堂实录教学视频老师优质课公开课视频录像、观摩课音频精品课例、教学实录、在线视频免费下载播放由绿色圃中小学教育网整理,另外提供各年级学科的新课标人教版小学教案课件试卷教学设计教学反思说课稿听课评课稿等!
新课标人教版小学三年级上学期数学实用资料下载:
我需要下载此内容
绿色免费PPT课件试卷教案作文资源计算机网络最基础知识_-IT行业第一站
计算机网络最基础知识
计算机网络最基础知识
标题:计算机网络最基础知识
&&&&&& 信息的重要性,信息,指音讯、消息;通讯系统传输和处理的对象,泛指人类社会传播的一切内容。人通过获得、识别自然界和社会的不同信息来区别不同事物,得以认识和改造世界。在一切通讯和控制系统中,信息是一种普遍联系的形式。1948年,数学家香农在题为&通讯的数学理论&的论文中指出:&信息是用来消除随机不定性的东西&。美国数学家、控制论的奠基人诺伯特&维纳在他的《控制论&&动物和机器中的通讯与控制问题》中认为,信息是&我们在适应外部世界,控制外部世界的过程中同外部世界交换的内容的名称&。英国学者阿希贝认为,信息的本性在于事物本身具有变异度。信息,物质,能源构成世界三大自然。什么是ISO?iso(国际标准化组织简称)即国际标准化组织。国际标准化组织成立于日,制作全世界工商业国际标准的各国国家标准机构代表的国际标准建立机构,总部设于瑞士日内瓦,成员包括162个会员国。该组织自我定义为非政府组织,官方语言是英语、法语和俄语。参加者包括各会员国的国家标准机构和主要公司。它是世界上最大的非政府性标准化专门机构,是国际标准化领域中一个十分重要的组织。国际标准化组织的任务是促进全球范围内的标准化及其有关活动,以利于国际间产品与服务的交流,以及在知识、科学、技术和经济活动中发展国际间的相互合作。它显示了强大的生命力,吸引了越来越多的国家参与其活动。什么是OSI?OSI是Open&System&Interconnection的缩写,意为开放式系统互联。国际标准化组织(ISO)制定了OSI模型。这个模型把网络通信的工作分为7层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。什么是广域网?广域网(WAN,Wide&Area&Network)也称远程网(long&haul&network&)。通常跨接很大的物理范围,所覆盖的范围从几十公里到几千公里,它能连接多个城市或国家,或横跨几个洲并能提供远距离通信,形成国际性的远程网络。覆盖的范围比局域网(LAN)和城域网(MAN)都广。广域网的通信子网主要使用分组交换技术。广域网的通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网,它将分布在不同地区的局域网或计算机系统互连起来,达到资源共享的目的。如互联网是世界范围内最大的广域网。广域网是由许多交换机组成的,交换机之间采用点到点线路连接,几乎所有的点到点通信方式都可以用来建立广域网,包括租用线路、光纤、微波、卫星信道。而广域网交换机实际上就是一台计算机,有处理器和输入/输出设备进行数据包的收发处理。什么是电路交换网?电路交换是指按照需求建立连接并允许专用这些连接直至它们被释放这样一个过程。电路交换网络包含一条物理路径,并支持网络连接过程中两个终点间的单连接方式。传统的语音电话服务通过公共交换电话网&PSTN(而不是&IP&语音)实现电路交换过程。电话公司在用户呼叫期间为用户呼叫号码设定一条特定的物理路径,该路径专用于两终点双方间的连接。什么是办公自动化?办公自动化的核心是通信。办公自动化(Office&Automation,简称OA)是将现代化办公和计算机网络功能结合起来的一种新型的办公方式。办公自动化没有统一的定义,凡是在传统的办公室中采用各种新技术、新机器、新设备从事办公业务,都属于办公自动化的领域。在行政机关中,大都把办公自动化叫做电子政务,企事业单位就大都叫OA,即办公自动化。通过实现办公自动化,或者说实现数字化办公,可以优化现有的管理组织结构,调整管理体制,在提高效率的基础上,增加协同办公能力,强化决策的一致性,最后实现提高决策效能的目的。什么是校园网?校园网是为学校师生提供教学、科研和综合信息服务的宽带多媒体网络。首先,校园网应为学校教学、科研提供先进的信息化教学环境。这就要求:校园网是一个宽带&、具有交互功能和专业性很强的局域网络。多媒体教学软件开发平台、多媒体演示教室、教师备课系统、电子阅览室以及教学、考试资料库等,都可以在该网络上运行。如果一所学校包括多个专业学科(或多个系),也可以形成多个局域网络,并通过有线或无线方式连接起来。其次,校园网应具有教务、行政和总务管理功能。什么是智能大厦?关于智能大厦,社会上有一种通俗说法:即将大楼内各种各样的控制设备、通讯设备、管理系统、消防系统、给排水系统等装置的信息,用同一种线缆接入中央控制室,大楼的住户可根据需要在所在办公地点添置各种各样的设备并连接于所在场所预先设置的接线装置,这些设备可随意摆放或变换位置,一旦位置确定后,大楼管理人员只需在中央控制室进行相应点及相应设备之间的简单跳线即可使这些设备进入大楼的布线系统,实施控制和管理功能,这就是所谓的智能大厦概念。什么是联机系统?联机系统(on-line&input)。联机系统是由一台中央计算机连接大量的地理位置分散的终端而构成的计算机系统。1、输入数据可以从数据源直接输入进计算机进行处理,输出数据即处理结果又可直接传送给用户的系统,称联机系统。2、从源记录到最后处理之间无需人员介入而只由计算机进行操作的系统。联机系统&属于计算机网络发展第二阶段。什么是pos?销售终端&&POS(point&of&sale)是一种多功能终端,把它安装在信用卡的特约商户和受理网点中与计算机联成网络,就能实现电子资金自动转帐,它具有支持消费、预授权、余额查询和转帐等功能,使用起来安全、快捷、可靠。什么是集散系统?集散系统实质上是一种分散型自动化系统,又称做以微处理机为基础的分散综合自动化系统。集散系统具有分散监控和集中综合管理两方面的特征,而更将"集&"字放在首位,更注重于全系统信息的综合管理。80年代以来,集散系统逐渐取代常规仪表,成为工业自动化的主流。工业自动化不仅体现在工业现场,也体现在&企业事务行政管理上。集散系统的发展及工业自动化的需求,导致了一个更庞大、更完善的计算机集成制造系统CIMS(Computer&Integrated&Manufacturing&System)的诞生。集散系统一般分为三级:过程级、监控级和管理信息级。集散系统是将分散于现场的以微机为基础的过程监测单元、过程控制单元、图文操作站及主机(上位&机)集成在一起的系统。它采用了局域网技术,将多个过程监控、操作站和上位机互连在一起,使通信功能增强,信息传输速度加快,吞吐量加大,为信息的综合管&理提供了基础。因为CIMS具有提高生产率、缩短生产周期等一系列极具吸引力的优点,所以已经成为未来工厂自动化的方向。什么是通信子网?通信子网(communication&subnet,或简称子网)是指网络中实现网络通信功能的设备及其软件的集合,通信设备、网络通信协议、通信控制软件等属于通信子网,是网络的内层,负责信息的传输。主要为用户提供数据的传输,转接,加工,变换等。通信子网的任务是在端结点之间传送报文,主要由转结点和通信链路组成。在ARPA网中,把转结点通称为接口处理机(IMP)。通信子网主要包括中继器、集线器、网桥、路由器、网关等硬件设备。什么是资源子网?计算机网络首先是一个通信网络,各计算机之间通过通信媒体、通信设备进行数字通信,在此基础上各计算机可以通过网络软件共享其它计算机上的硬件资源、软件资源和数据资源。从计算机网络各组成部件的功能来看,各部件主要完成两种功能,即网络通信和资源共享。把计算机网络中实现网络通信功能的设备及其软件的集合称为网络的通信子网,而把网络中实现资源共享功能的设备及其软件的集合称为资源子网。资源子网&&英文对照:resource&sub&-&resource&&资源子网&&在学术文献中的解释:1、随着计算机网络结构的不断完善,人们又从逻辑上把数据处理功能和数据通信功能分开,将数据处理部分称为资源子网,而将通信功能部分称为通信子网。2、网络主机、终端及其附属设备(包括硬件、系统软件和应用软件等),它们构成了网络的基本资源,主要负责数据处理任务,称为资源子网。3、资源子网是指用户端系统(局内调度自动化网、MIS网和变电站的局域网),包括用户的应用资源,如服务器、故障收集计算机、外设、系统软件和应用软件。4、将数据处理部分称为资源子网,通信部分称为通信子网。通信子网采用的技术有两种:一是电路交换,二是分组交换。民航的自动数据处理网络采用后者比较符合空管数据为突发型的特点。资源子网负责全网数据处理和向网络用户提供资源及网络服务,包括网络的数据处理资源和数据存储资源。网络子网是计算机网络中面向用户的部分,其主体是连入计算机网络内的所有主计算机以及这些计算机所拥有的面向用户端的外部设备、软件和共享的的数据资源。网络子网中各种数据处理设备有计算机、智能终端、磁盘存储器和监控设备等。什么是计算机网络?计算机网络,是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。按广义定义关于计算机网络的最简单定义是:一些相互连接的、以共享资源为目的的、自治的计算机的集合。另外,从逻辑功能上看,计算机网络是以传输信息为基础目的,用通信线路将多个计算机连接起来的计算机系统的集合,一个计算机网络组成包括传输介质和通信设备。从用户角度看,计算机网络它是这样定义的:存在着一个能为用户自动管理的网络操作系统。由它调用完成用户所调用的资源,而整个网络像一个大的计算机系统一样,对用户是透明的。一个比较通用的定义是:利用通信线路将地理上分散的、具有独立功能的计算机系统和通信设备按不同的形式连接起来,以功能完善的网络软件及协议实现资源共享和信息传递的系统。从整体上来说计算机网络就是把分布在不同地理区域的计算机与专门的外部设备用通信线路互联成一个规模大、功能强的系统,从而使众多的计算机可以方便地互相传递信息,共享硬件、软件、数据信息等资源。简单来说,计算机网络就是由通信线路互相连接的许多自主工作的计算机构成的集合体。按连接定义计算机网络就是通过线路互连起来的、资质的计算机集合,确切的说就是将分布在不同地理位置上的具有独立工作能力的计算机、终端及其附属设备用通信设备和通信线路连接起来,并配置网络软件,以实现计算机资源共享的系统。按需求定义计算机网络就是由大量独立的、但相互连接起来的计算机来共同完成计算机任务。这些系统称为计算机网络(computer&networks)第一代计算机网络---远程终端联机阶段;第二代计算机---计算机网络阶段;第三代计算机网络---计算机网络互联阶段;第四代计算机网络---国际互联网与信息高速公路阶段;早期年代过去人们开始将彼此独立发展的计算机技术与通信技术结合起来,完成了数据通信与计算机通信网络的研究,为计算机网络的出现做好了技术准备,奠定了理论基础。相关应用
为什么会建立这么多的计算机网络,主要还是因为计算机网络的运用受到个人和公司的青睐。
一、商业运用。
1、主要是实现资源共享(resource&sharing)最终打破地理位置束缚(tyranny&of&geography),主要运用客户-服务器模型(client-server&model)。
2、提供强大的通信媒介(communication&medium)。如:电子邮件(E-mail)、视频会议。
3、电子商务活动。如:各种不同供应商购买子系统,然后在将这些部件组装起来。
4、通过Internet与客户做各种交易。如:书店、音像在家里购买商品或者服务。
二、家庭运用
1、访问远程信息。如:浏览Web页面获得艺术、商务、烹饪、政府、健康、历史、爱好、娱乐、科学、运动、旅游等等信息。
2、个人之间的通信。如:即时消息(instant&messaging)运用&QQ、MSN、YY&、聊天室、对等通信(peer-to-communication)&通过中心数据库共享,各大网盘,但是容易造成侵犯版权&。
3、交互式娱乐。如:视频点播、即时评论及参加活动&电视直播网络互动&、网络游戏。
4、广义的电子商务。如:电子方式支付账单、管理银行账户、处理投资。
三、移动用户
以无线网络为基础。
1、可移动的计算机:笔记本计算机、PDA、3G手机。
2、军事:一场战争不可能靠局域网设备通信。
3、运货车队、出租车、快递专车等应用。
四、社会问题
网络的广泛运用已经导致了新的社会、伦理和政治问题。
计算机网络的分类与的一般的事物分类方法一样,可以按事物的所具有的不同性质特点即事物的属性分类。计算机网络通俗地讲就是由多台计算机(或其它计算机网络设备)通过传输介质和软件物理(或逻辑)连接在一起组成的。总的来说计算机网络的组成基本上包括:计算机、网络操作系统、传输介质(可以是有形的,也可以是无形的,如无线网络的传输介质就是空气)以及相应的应用软件四部分。
要学习网络,首先就要了解主要网络类型,分清哪些是我们初级学者必须掌握的,哪些是的主流网络类型。计算机网络的标准制定机构
什么是?因特网即互联网。
国际互联网(internetwork,简称internet),始于1969年的美国,又称因特网,是全球性的网络,是一种公用信息的载体,是大众传媒的一种。具有快捷性、普及性,是现今最流行、最受欢迎的传媒之一。这种大众传媒比以往的任何一种通讯媒体都要快。互联网是由一些使用公用语言互相通信的计算机连接而成的网络,即广域网、局域网及单机按照一定的通讯协议组成的国际计算机网络。什么是以太网?以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802.3系列标准相类似。以太网(EtherNet)
以太网最早由Xerox(施乐)公司创建,于1980年DEC、lntel和Xerox三家公司联合开发成为一个标准。以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网。它们都符合IEEE802.3。
IEEE802.3标准
IEEE802.3规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术,它很大程度上取代了其他局域网标准。如令牌环、FDDI和ARCNET。历经100M以太网在上世纪末的飞速发展后,千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
常见的802.3应用为:
10M:&10base-T&(铜线UTP模式)
100M:&100base-TX&(铜线UTP模式)
100base-FX(光纤线)
1000M:&1000base-T(铜线UTP模式)
以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。人们通常认为以太网发明于1973年,当年罗伯特&梅特卡夫(Robert&Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David&Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。1977年底,梅特卡夫和他的合作者获得了&具有冲突检测的多点数据通信系统&的专利。多点传输系统被称为CSMA/CD(带冲突检测的载波侦听多路访问),从此标志以太网的诞生。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。3com对迪吉多,英特尔,和
施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于日出台,当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry&Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法&以太网不适合在理论中研究,只适合在实际中应用&。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院&MAC项目(Project&MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。
它不是一种具体的网络,是一种技术规范。
该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10&Base&T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。
3分类和发展
标准以太网
开始以太网只有10Mbps的吞吐量,使用的是带有冲突检测的载波侦听多路访问(CSMA/CD,Carrier&Sense&Multiple&Access/Collision&Detection)的访问控制方法。这种早期的10Mbps以太网称之为标准以太网,以太网可以使用粗同轴电缆、细同轴电缆、非屏蔽双绞线、屏蔽双绞线和光纤等多种传输介质进行连接。并且在IEEE&802.3标准中,为不同的传输介质制定了不同的物理层标准,在这些标准中前面的数字表示传输速度,单位是&Mbps&,最后的一个数字表示单段网线长度(基准单位是100m),Base表示&基带&的意思,Broad代表&宽带&。
&10Base-5&使用直径为0.4英寸、阻抗为50&O粗同轴电缆,也称粗缆以太网,最大网段长度为500m。基带传输方法,拓扑结构为总线型。10Base-5组网主要硬件设备有:粗同轴电缆、带有AUI插口的以太网卡、中继器、收发器、收发器电缆、终结器等。
&10Base-2&使用直径为0.2英寸、阻抗为50&O细同轴电缆,也称细缆以太网,最大网段长度为185m,基带传输方法,拓扑结构为总线型;10Base-2组网主要硬件设备有:细同轴电缆、带有BNC插口的以太网卡、中继器、T型连接器、终结器等。
&10Base-T&使用双绞线电缆,最大网段长度为100m。拓扑结构为星型;10Base-T组网主要硬件设备有:3类或5类非屏蔽双绞线、带有RJ-45插口的以太网卡、集线器、交换机、RJ-45插头等。
&&1Base-5&使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;
&10Broad-36&使用同轴电缆(RG-59/U&CATV),网络的最大跨度为3600m,网段长度最大为1800m,是一种宽带传输方式;
&10Base-F&使用光纤传输介质,传输速率为10Mbps。
快速以太网
以太网协议
随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mbps光缆的LAN。1993年10月,Grand&Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BASE-TX、100BASE-T4、MⅡ、中继器、全双工等标准进行了研究。1995年3月IEEE宣布了IEEE802.3u&100BASE-T快速以太网标准(Fast&Ethernet),就这样开始了快速以太网的时代。
1990年的以太网网卡
速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效的利用现有的设施。快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于CSMA/CD技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。100Mbps快速以太网标准又分为:100BASE-TX&、100BASE-FX、100BASE-T4三个子类。
&&100BASE-TX:是一种使用5类数据级无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用两对双绞线,一对用于发送,一对用于接收数据。在传输中使用4B/5B编码方式,信号频率为125MHz。符合EIA586的5类布线标准和IBM的SPT&1类布线标准。使用同10BASE-T相同的RJ-45连接器。它的最大网段长度为100米。它支持全双工的数据传输。
&&100BASE-FX:是一种使用光缆的快速以太网技术,可使用单模和多模光纤(62.5和125um)。多模光纤连接的最大距离为550米。单模光纤连接的最大距离为3000米。在传输中使用4B/5B编码方式,信号频率为125MHz。它使用MIC/FDDI连接器、ST连接器或SC连接器。它的最大网段长度为150m、412m、2000m或更长至10公里,这与所使用的光纤类型和工作模式有关,它支持全双工的数据传输。100BASE-FX特别适合于有电气干扰的环境、较大距离连接、或高保密环境等情况下的适用。
&&100BASE-T4:是一种可使用3、4、5类无屏蔽双绞线或屏蔽双绞线的快速以太网技术。100Base-T4使用4对双绞线,其中的三对用于在33MHz的频率上传输数据,每一对均工作于半双工模式。第四对用于CSMA/CD冲突检测。在传输中使用8B/6T编码方式,信号频率为25MHz,符合EIA586结构化布线标准。它使用与10BASE-T相同的RJ-45连接器,最大网段长度为100米。
千兆以太网
千兆以太网技术作为最新的高速以太网技术,给用户带来了提高核心网络的有效解决方案,这种解决方案的最大优点是继承了传统以太技术价格便宜的优点。千兆技术仍然是以太技术,它采用了与10M以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于该技术不改变传统以太网的桌面应用、操作系统,因此可与10M或100M的以太网很好地配合工作。升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护投资。此外,IEEE标准将支持最大距离为550米的多模光纤、最大距离为70千米的单模光纤和最大距离为100米的铜轴电缆。千兆以太网填补了802.3以太网/快速以太网标准的不足。
为了能够侦测到64Bytes资料框的碰撞,千兆以太网(Gigabit&Ethernet)所支持的距离更短。Gigabit&Ethernet&支持的网络类型,如下表所示:
传输介质&距离
1000Base-CX&Copper&STP&25m
1000Base-T&Copper&Cat&5&UTP&100m
1000Base-SX&Multi-mode&Fiber&500m
1000Base-LX&Single-mode&Fiber&3000m
千兆以太网技术有两个标准:IEEE802.3z和IEEE802.3ab。IEEE802.3z制定了光纤和短程铜线连接方案的标准。IEEE802.3ab制定了五类双绞线上较长距离连接方案的标准。
⒈&IEEE802.3z
IEEE802.3z工作组负责制定光纤(单模或多模)和同轴电缆的全双工链路标准。IEEE802.3z定义了基于光纤和短距离铜缆的1000Base-X,采用8B/10B编码技术,信道传输速度为1.25Gbit/s,去耦后实现1000Mbit/s传输速度。IEEE802.3z具有下列千兆以太网标准:
&&1000Base-SX&只支持多模光纤,可以采用直径为62.5um或50um的多模光纤,工作波长为770-860nm,传输距离为220-550m。
&&1000Base-LX&单模光纤:可以支持直径为9um或10um的单模光纤,工作波长范围为nm,传输距离为5km左右。
&&1000Base-CX&采用150欧屏蔽双绞线(STP),传输距离为25m。
⒉&IEEE802.3ab
IEEE802.3ab工作组负责制定基于UTP的半双工链路的千兆以太网标准,产生IEEE802.3ab标准及协议。IEEE802.3ab定义基于5类UTP的1000Base-T标准,其目的是在5类UTP上以1000Mbit/s速率传输100m。IEEE802.3ab标准的意义主要有两点:
⑴&保护用户在5类UTP布线系统上的投资。
⑵&1000Base-T是100Base-T自然扩展,与10Base-T、100Base-T完全兼容。不过,在5类UTP上达到1000Mbit/s的传输速率需要解决5类UTP的串扰和衰减问题,因此,使IEEE802.3ab工作组的开发任务要比IEEE802.3z复杂些。
万兆以太网
万兆以太网规范包含在&IEEE&802.3&标准的补充标准&IEEE&802.3ae&中,它扩展了&IEEE&802.3&协议和&MAC&规范,使其支持&10Gb/s&的传输速率。除此之外,通过&WAN&界面子层(WIS:WAN&interface&sublayer),10千兆位以太网也能被调整为较低的传输速率,如&9.584640&Gb/s&(OC-192),这就允许10千兆位以太网设备与同步光纤网络(SONET)&STS&-192c&传输格式相兼容。
&&10GBASE-SR&和&10GBASE-SW&主要支持短波(850&nm)多模光纤(MMF),光纤距离为&2m&到&300&m。
10GBASE-SR&主要支持&暗光纤&(dark&fiber),暗光纤是指没有光传播并且不与任何设备连接的光纤。
10GBASE-SW&主要用于连接&SONET&设备,它应用于远程数据通信。
&&10GBASE-LR&和&10GBASE-LW&主要支持长波(1310nm)单模光纤(SMF),光纤距离为&2m&到&10km&(约32808英尺)。
10GBASE-LW&主要用来连接&SONET&设备时,
10GBASE-LR&则用来支持&暗光纤&(dark&fiber)。
&&10GBASE-ER&和&10GBASE-EW&主要支持超长波(1550nm)单模光纤(SMF),光纤距离为&2m&到&40km&(约131233英尺)。
10GBASE-EW&主要用来连接&SONET&设备,
10GBASE-ER&则用来支持&暗光纤&(dark&fiber)。
&&10GBASE-LX4&采用波分复用技术,在单对光缆上以四倍光波长发送信号。系统运行在&1310nm&的多模或单模暗光纤方式下。该系统的设计目标是针对于&2m&到&300&m&的多模光纤模式或&2m&到&10km&的单模光纤模式。
△&以太网的连接
总线型拓扑结构图
所需的电缆较少、价格便宜、管理成本高,不易隔离故障点、采用共享的访问机制,易造成网络拥塞。早期以太网多使用总线型的拓扑结构,采用同轴缆作为传输介质,连接简单,通常在小规模的网络中不需要专用的网络设备,但由于它存在的固有缺陷,已经逐渐被以集线器和交换机为核心的星型网络所代替。
管理方便、容易扩展、需要专用的网络设备作为网络的核心节点、需要更多的网线、对核心设备的可靠性要求高。采用专用的网络设备(如集线器或交换机)作为核心节点,通过双绞线将局域网中的各台主机连接到核心节点上,这就形成了星型结构。星型网络虽然需要的线缆比总线型多,但布线和连接器比总线型的要便宜。此外,星型拓扑可以通过级联的方式很方便的将网络扩展到很大的规模,因此得到了广泛的应用,被绝大部分的以太网所采用。
以太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到路由器间的点到点链路上。同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。
注意区分双绞线中的直通线和交叉线两种连线方法.
以下连接应使用直通电缆:
交换机到路由器以太网端口
计算机到交换机
计算机到集线器
交叉电缆用于直接连接&LAN&中的下列设备:
交换机到交换机
交换机到集线器
集线器到集线器
路由器到路由器的以太网端口连接
计算机到计算机
计算机到路由器的以太网端口
CSMA/CD共享介质以太网
带冲突检测的载波侦听多路访问&(CSMA/CD)[1]技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网要简单。当某台电脑要发送信息时,必须遵守以下规则:
开始:&如果线路空闲,则启动传输,否则转到第4步。
发送:&如果检测到冲突,继续发送数据直到达到最小报文时间&(保证所有其他转发器和终端检测到冲突),再转到第4步。
成功传输:&向更高层的网络协议报告发送成功,退出传输模式。
线路忙:&等待,直到线路空闲&线路进入空闲状态-&等待一个随机的时间,转到第1步,除非超过最大尝试次数。
超过最大尝试传输次数:&向更高层的网络协议报告发送失败,退出传输模式。
就像在没有主持人的座谈会中,所有的参加者都通过一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将采用退避指数增长时间的方法(退避的时间通过截断二进制指数退避算法(truncated&binary&exponential&backoff)来实现)。
最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment&Unit&Interface,AUI)的收发器连接到电缆上。一根简单网线对于一个小型网络来说还是很可靠的,对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。
因为所有的通信信号都在共用线路上传输,即使信息只是发给其中的一个终端(destination),某台电脑发送的消息都将被所有其他电脑接收。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous&mode)。这种&一个说,大家听&的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。
接口的工作模式
以太网卡可以工作在两种模式下:半双工和全双工。
半双工:半双工传输模式实现以太网载波监听多路访问冲突检测。传统的共享LAN是在半双工下工作的,在同一时间只能传输单一方向的数据。当两个方向的数据同时传输时,就会产生冲突,这会降低以太网的效率。
全双工:全双工传输是采用点对点连接,这种安排没有冲突,因为它们使用双绞线中两个独立的线路,这等于没有安装新的介质就提高了带宽。例如在上例的车站间又加了一条并行的铁轨,同时可有两列火车双向通行。在全双工模式下,冲突检测电路不可用,因此每个全双工连接只用一个端口,用于点对点连接。标准以太网的传输效率可达到50%~60%的带宽,全双工在两个方向上都提供100%的效率。
以太网的工作原理
以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。以太网中节点都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。
以太网的工作过程如下:
当以太网中的一台主机要传输数据时,它将按如下步骤进行:
1、监听信道上是否有信号在传输。如果有的话,表明信道处于忙状态,就继续监听,直到信道空闲为止。
2、若没有监听到任何信号,就传输数据
3、传输的时候继续监听,如发现冲突则执行退避算法,随机等待一段时间后,重新执行步骤1(当冲突发生时,涉及冲突的计算机会发送会返回到监听信道状态。
注意:每台计算机一次只允许发送一个包,一个拥塞序列,以警告所有的节点)
4、若未发现冲突则发送成功,所有计算机在试图再一次发送数据之前,必须在最近一次发送后等待9.6微秒(以10Mbps运行)。
以太网帧的概述:
以太网的帧是数据链路层的封装,网络层的数据包被加上帧头和帧尾成为可以被数据链路层识别的数据帧(成帧)。虽然帧头和帧尾所用的字节数是固定不变的,但依被封装的数据包大小的不同,以太网的长度也在变化,其范围是64~1518字节(不算8字节的前导字)。
冲突/冲突域
冲突(Collision):在以太网中,当两个数据帧同时被发到物理传输介质上,并完全或部分重叠时,就发生了数据冲突。当冲突发生时,物理网段上的数据都不再有效。
冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。
影响冲突产生的因素:冲突是影响以太网性能的重要因素,由于冲突的存在使得传统的以太网在负载超过40%时,效率将明显下降。产生冲突的原因有很多,如同一冲突域中节点的数量越多,产生冲突的可能性就越大。此外,诸如数据分组的长度(以太网的最大帧长度为1518字节)、网络的直径等因素也会影响冲突的产生。因此,当以太网的规模增大时,就必须采取措施来控制冲突的扩散。通常的办法是使用网桥和交换机将网络分段,将一个大的冲突域划分为若干小冲突域。
广播/广播域
广播:在网络传输中,向所有连通的节点发送消息称为广播。
广播域:网络中能接收任何一设备发出的广播帧的所有设备的集合。
广播和广播域的区别:广播网络指网络中所有的节点都可以收到传输的数据帧,不管该帧是否是发给这些节点。非目的节点的主机虽然收到该数据帧但不做处理。
广播是指由广播帧构成的数据流量,这些广播帧以广播地址(地址的每一位都为&1&)为目的地址,告之网络中所有的计算机接收此帧并处理它。
共享式以太网
共享式以太网的典型代表是使用10Base2/10Base5的总线型网络和以集线器为核心的星型网络。在使用集线器的以太网中,集线器将很多以太网设备集中到一台中心设备上,这些设备都连接到集线器中的同一物理总线结构中。从本质上讲,以集线器为核心的以太网同原先的总线型以太网无根本区别。
集线器的工作原理:
集线器并不处理或检查其上的通信量,仅通过将一个端口接收的信号重复分发给其他端口来扩展物理介质。所有连接到集线器的设备共享同一介质,其结果是它们也共享同一冲突域、广播和带宽。因此集线器和它所连接的设备组成了一个单一的冲突域。如果一个节点发出一个广播信息,集线器会将这个广播传播给所有同它相连&的节点,因此它也是一个单一的广播域。
集线器的工作特点:
集线器多用于小规模的以太网,由于集线器一般使用外接电源(有源),对其接收的信号有放大处理。在某些场合,集线器也被称为&多端口中继器&。
集线器同中继器一样都是工作在物理层的网络设备。
共享式以太网存在的弊端:由于所有的节点都接在同一冲突域中,不管一个帧从哪里来或到哪里去,所有的节点都能接受到这个帧。随着节点的增加,大量的冲突将导致网络性能急剧下降。而且集线器同时只能传输一个数据帧,这意味着集线器所&有端口都要共享同一带宽。
交换式以太网
交换式结构:
在交换式以太网中,交换机根据收到的数据帧中的MAC地址决定数据帧应发向交换机的哪个端口。因为端口间的帧传输彼此屏蔽,因此节点就不担心自己发送的帧在通过交换机时是否会与其他节点发送的帧产生冲突。
为什么要用交换式网络替代共享式网络:
&减少冲突:交换机将冲突隔绝在每一个端口(每个端口都是一个冲突域),避免了冲突的扩散。
&提升带宽:接入交换机的每个节点都可以使用全部的带宽,而不是各个节点共享带宽。
以太网交换机
交换机的工作原理:
&交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。
&交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。
&如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称之为泛洪(flood)。
&广播帧和组播帧向所有的端口转发。
交换机的三个主要功能:
&学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。
&转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。
&消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。
交换机的工作特性:
&交换机的每一个端口所连接的网段都是一个独立的冲突域。
&交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(唯一的例外是在配有VLAN的环境中)。
&交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备
交换机的操作模式
交换机处理帧有不同的操作模式:
存储转发:交换机在转发之前必须接收整个帧,并进行检错,如无错误再将这一帧发向目的地址。帧通过交换机的转发时延随帧长度的不同而变化。
直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。
直通式的转发速度大大快于存储转发模式,但可靠性要差一些,因为可能转发冲突&帧或带CRC错误的帧。
生成树协议
消除回路:
在由交换机构成的交换网络中通常设计有冗余链路和设备。这种设计的目的是防止一个点的失败导致整个网络功能的丢失。虽然冗余设计能够消除单点失败的问题,但也导致了交换回路的产生,它会导致以下问题。
&同一帧的多份拷贝
&不稳定的MAC地址表
因此,在交换网络中必须有一个机制来阻止回路,而生成树协议(Spanning&Tree&Protocol)的作用正在于此。
生成树的工作原理:
生成树协议的国际标准是IEEE802.1b。运行生成树算法的网桥/交换机在规定的间隔(默认2秒)内通过网桥协议数据单元(BPDU)的组播帧与其他交换机交换配置信息,其工作的过程如下:
&通过比较网桥优先级选取根网桥(给定广播域内只有一个根网桥)。
&其余的非根网桥只有一个通向根交换机的端口称为根端口。
&每个网段只有一个转发端口。
&根交换机所有的连接端口均为转发端口。
注意:生成树协议在交换机上一般是默认开启的,不经人工干预即可正常工作。但这种自动生成的方案可能导致数据传输的路径并非最优化。因此,可以通过人工设置网桥优先级的方法影响生成树的生成结果。
生成树的状态:
运行生成树协议的交换机上的端口,总是处于下面四个状态中的一个。在正常操作&期间,端口处于转发或阻塞状态。当设备识别网络拓扑结构变化时,交换机自动进行状态转换,在这期间端口暂时处于监听和学习状态。
阻塞:所有端口以阻塞状态启动以防止回路。由生成树确定哪个端口转换到转发状态,处于阻塞状态的端口不转发数据但可接受BPDU。
监听:不转发,检测BPDU,(临时状态)。
学习:不转发,学习MAC地址表(临时状态)。
转发:端口能转送和接受数据。
小知识:实际上,在真正使用交换机时还可能出现一种特殊的端口状态-Disable状态。这是由于端口故障或由于错误的交换机配置而导致数据冲突造成的死锁状态。如果并非是端口故障的原因,我们可以通过交换机重启来解决这一问题。
生成树的重计算:
当网络的拓扑结构发生改变时,生成树协议重新计算,以生成新的生成树结构。当所有交换机的端口状态变为转发或阻塞时,意味着重新计算完毕。这种状态称为会聚(Convergence)。
注意:在网络拓扑结构改变期间,设备直到生成树会聚才能进行通信,这可能会对&某些应用产生影响,因此一般认为可以使生成树运行良好的交换网络,不应该超过七层。此外可以通过一些特殊的交换机技术加快会聚的时间。
网桥概述:
依据帧地址进行转发的二层网络设备,可将数个局域网网段连接在一起。网桥可连接相同介质的网段也可访问不同介质的网段。网桥的主要作用是分割和减少冲突。它的工作原理同交换机类似,也是通过MAC地址表进行转发。网桥主要完成三个功能:转发、过滤数据帧;帧格式转换;传输速率转换。
透明网桥:无需改动设备的软硬件配置,即可完成LAN互连的网桥。交换机可看做多端口透明网桥。
路由器的简单介绍
什么是路由器:
路由器是使用一种或者更多度量因素的网络设备,它决定网络通信能够通过的最佳路径。路由器依据网络层信息将数据包从一个网络前向转发到另一个网络。
路由器的功能:
&隔绝广播,划分广播域
&通过路由选择算法决定最优路径
&转发基于三层目的地址的数据包
虚拟局域网VLAN
网桥/交换机的本质和功能是通过将网络分割成多个冲突域提供增强的网络服务,然而网桥/交换机仍是一个广播域,一个广播数据包可被网桥/交换机转发至全网。虽然OSI模型的第三层的路由器提供了广播域分段,但交换机也提供了一种称为VLAN的广播域分段方法。
什么是VLAN:
一个VLAN是跨越多个物理LAN网段的逻辑广播域,人们设计VLAN来为工作站提供独立的广播域,这些工作站是依据其功能、项目组或应用而不顾其用户的物理位置而逻辑分段的。
一个VLAN=一个广播域=逻辑网段
VLAN的优点和安装特性:
VLAN的优点:
&安全性。一个VLAN里的广播帧不会扩散到其他VLAN中。
&网络分段。将物理网段按需要划分成几个逻辑网段
&灵活性。可将交换端口和连接用户逻辑的分成利益团体,例如以同一部门的工作人员,项目小组等多种用户组来分段。
典型VLAN的安装特性:
&每一个逻辑网段像一个独立物理网段
&VLAN能跨越多个交换机
&由主干(Trunk)为多个VLAN运载通信量
VLAN如何操作:
&配置在交换机上的每一个VLAN都能执行地址学习、转发/过滤和消除回路机制,就像一个独立的物理网桥一样。VLAN可能包括几个端口
&交换机通过将数据转发到与发起端口同一VLAN的目的端口实现VLAN。
&通常一个端口只运载它所属VLAN的通信量。
VLAN的成员模式:
静态:分配给VLAN的端口由管理员静态(人工)配置。
动态:动态VLAN可基于MAC地址、IP地址等识别其成员资格。当使用MAC地址时,通常的方式是用VLAN成员资格策略服务器(VMPS)支持动态VLAN。VMPS包括一个映射MAC地址到VLAN分配的数据库。当一个帧到达动态端口时,交换机根据帧的源地址查询VMPS,获取相应的VLAN分配。
注意:虽然VLAN是在交换机上划分的,但交换机是二层网络设备,单一的有交换机构成的网络无法进行VLAN间通信的,解决这一问题的方法是使用三层的网络设备-路由器。路由器可以转发不同VLAN间的数据包,就像它连接了几个真实的物理网段一样。这时我们称之为VLAN间路由。
高速以太网
快速以太网:
快速以太网(Fast&Ethernet)也就是我们常说的百兆以太网,它在保持帧格式、MAC(介质存取控制)机制和MTU(最大传送单元)质量的前提下,其速率比10Base-T的以太网增加了10倍。二者之间的相似性使得10Base-T以太网现有的应用程序和网络管理工具能够在快速以太网上使用。快速以太网是基于扩充的IEEE802.3标准。
千兆以太网:
千兆位以太网是一种新型高速局域网,它可以提供1Gbps的通信带宽,采用和传统10M、100M以太网同样的CSMA/CD协议、帧格式和帧长,因此可以实现在原有低速以太网基础上平滑、连续性的网络升级。只用于Point&to&Point,连接介质以光纤为主,最大传输距离已达到70km,可用于MAN的建设。
由于千兆以太网采用了与传统以太网、快速以太网完全兼容的技术规范,因此千兆以太网除了继承传统以太局域网的优点外,还具有升级平滑、实施容易、性价比高和易管理等优点。
千兆以太网技术适用于大中规模(几百至上千台电脑的网络)的园区网主干,从而实现千兆主干、百兆交换(或共享)到桌面的主流网络应用模式。
千兆以太网的优势是同旧系统的兼容性好,价格相对便宜。在这也是千兆以太网在同ATM的竞争中获胜的主要原因。
当今居于主导地位的局域网技术-以太网。以太网是建立在CSMA/CD机制上的广播型网络。冲突的产生是限制以太网性能的重要因素,早期的以太网设备如集线器是物理层设备,不能隔绝冲突扩散,限制了网络性能的提高。而交换机(网桥)做为一种能隔绝冲突的二层网络设备,极大的提高了以太网的性能。正逐渐替代集线器成为主流的以太网设备。然而交换机(网桥)对网络中的广播数据流量则不做任何限制,这也影响了网络的性能。通过在交换机上划分VLAN和采用三层的网络设备-路由器解决了这一问题。以太网做为一种原理简单,便于实现同时又价格低廉的局域网技术已经成为业界的主流。而更高性能的快速以太网和千兆以太网的出现更使其成为最有前途的网络技术。
为什么叫以太网?
以太网这个名字,起源于一个科学假设:声音是通过空气传播的,那么光呢?在外太空没有空气光也可以传播。于是,有人说光是通过一种叫以太的物质传播。后来,爱因斯坦证明以太根本就不存在。
大家知道,声音是通过空气传播的,那么光是通过什么传播的呢?
在牛顿运动定律中,物体的运动是相对的。比如,地铁车厢里面的人看见您在车厢里原地踏步走,而位于车厢外面的人却看见你以120公里每小时的速度前进。
但光的运动并不是这样,您无论以什么物体作为参照物,它的运动速度始终都是299&792&458&米&/&秒。这个问题困惑了很多科学家,难道牛顿定律失灵了?一个来自瑞士专利局的职员,名叫爱因斯坦的人在1905年发表了篇论文,文中提到,无论观察者以何种速度运动,相对于他们而言,光的速度是恒久不变的,相对论便由此诞生了。
这简单的理念有一些非凡的结论。可能最著名者莫过于质量和能量的等价,用爱因斯坦的方程来表达就是E=mc^2(E是能量,m是质量,c是光速),以及没有任何东西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先增加了0.5%,而以90%光速运动的物体,其质量变得比正常质量的2倍还多。当一个物体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,这就需要无限大的能量才能做到。
由此我们可以看出,世界上根本就不存在以太这种物质,因为光速是永远恒定不变的,为其找个运动参照物是个笑话。有鉴于此,以太网的命名也就是一个笑话。但以太网并不会消失,它正随着人们追求高速度而不断的进行蜕变。以前,只要数据链路层遵从CSMA/CD协议通信,那么它就可以被称为以太网,但随着接入共享网络设备的增加,冲突会使网络的传输效率越来越低。后来,交换机的出现使全双工以太网得到了更好的实现。未来,以太网会披上光的外衣,飞的更快。
千兆以太网的优势是同旧系统的兼容性好,价格相对便宜。在这也是千兆以太网在同ATM的竞争中获胜的主要原因。当今居于主导地位的局域网技术-以太网。以太网是建立在
以太网CSMA/CD机制上的广播型网络。冲突的产生是限制以太网性能的重要因素,早期的以太网设备如集线器是物理层设备。不能隔绝冲突扩散,限制了网络性能的提高。而交换机(网桥)做为一种能隔绝冲突的二层网络设备,极大的提高了以太网的性能。正逐渐替代集线器成为主流的以太网设备,然而交换机(网桥)对网络中的广播数据流量则不做任何限制,这也影响了网络的性能。通过在交换机上划分VLAN和采用三层的网络设备-路由器解决了这一问题。以太网做为一种原理简单,便于实现同时又价格低廉的局域网技术已经成为业界的主流。而更高性能的快速以太网和千兆以太网的出现更使其成为最有前途的网络技术。
6网络体系结构
ethernet采用无源的介质,按广播方式传播信息。它规定了物理层和数据链路层协议,规定了物理层和数据链路层的接口以及数据链路层与更高层的接口。
物理层规定了Ethernet的基本物理属性,如数据编码、时标、电频等。
⑵数据链路层
数据链路层的主要功能是完成帧发送和帧接收,包括负责对用户数据进行帧的组装与分解,随时监测物理层的信息监测标志,了解信道的忙闲情况,实现数据链路的收发管理。
什么是VLAN?VLAN即虚拟局域网。VLAN(Virtual&Local&Area&Network)的中文名为"虚拟局域网"。VLAN是一种将局域网设备从逻辑上划分成一个个网段,从而实现虚拟工作组的新兴数据交换技术。这一新兴技术主要应用于交换机和路由器中,但主流应用还是在交换机之中。但又不是所有交换机都具有此功能,只有VLAN协议的第二层以上交换机才具有此功能,这一点可以查看相应交换机的说明书即可得知。什么是通信链路?
通信链路定义:网络中两个结点之间的物理通道称为通信链路。
关于定义内容的其它参考(简):
链路,所谓链路就是从一个节点到相邻节点的一段物理线路,而中间没有任何其他的交换节点。
结点,结点是包括一个数据元素及若干个指向其它子树的分支。
根据通信链路的连接方法,又可把通信链路分为两类:
(1)点对点连接通信链路,这时的链路只连接两个结点
(2)多点连接链路,指用一条链路连接多少个(n&2)结点
根据通信方式不同,则又可把链路分为两类
(1)单向通信链路
(2)双向通信链路
根据容量的不同而把链路分成两类
(1)无容量通信链路
(2)有容量通信链路
什么是网络节点?节点是指一台电脑或其他设备与一个有独立地址和具有传送或接收数据功能的网络相连。节点可以是工作站、客户、网络用户或个人计算机,还可以是服务器、打印机和其他网络连接的设备。每一个工作站﹑服务器、终端设备、网络设备,即拥有自己唯一网络地址的设备都是网络节点。整个网络就是由这许许多多的网络节点组成的,把许多的网络节点用通信线路连接起来,形成一定的几何关系,这就是计算机网络拓扑。
超高速网络
在局域网范畴,一般称多达1Gb/s(每秒1000兆比特,1G=1000M)以上带宽的光纤网络为超高速网络。在核心骨干网,一级称2.5Gh/s以上的光纤网络为超高速网络。超高速互联网使用专门的纤维光缆和现代线路设备。目前这种网络已具有5.5万个服务器,今后两年内将增加到20万个。纤维光缆将从LHC的建造者&&欧洲核子研究中心出发,连接的线路中心分布在美国、加拿大和欧洲、亚洲等地。每个线路中心分别与一些科研机构现有的高速网络相连,与超高速互联网连接的电脑能以极快速度传输数据。
当研究人员从事超大量的数据处理工作时,可以向分布在世界各地的数千台电脑求援,并在线存储所有信息。此外,超高速互联网能为天文学、生物学等研究领域提供便利。
延伸阅读:
热门搜索:
特色栏目:
类别推荐:

我要回帖

更多关于 千兆 万兆 光纤区别 的文章

 

随机推荐