将抛物线x1x2 y1y2c1:y1=-(x^2*√3)+√3沿x轴翻折,得抛物线x1x2 y1y2c2

已知抛物线C1:y1=12x2-x+1.将抛物线C1作适当的平移,得抛物线C2:y2=12(x-h)2,若2<x≤m时,y2≤x恒成立,求m的最大值._百度作业帮
已知抛物线C1:y1=12x2-x+1.将抛物线C1作适当的平移,得抛物线C2:y2=12(x-h)2,若2<x≤m时,y2≤x恒成立,求m的最大值.
已知抛物线C1:y1=x2-x+1.将抛物线C1作适当的平移,得抛物线C2:y2=(x-h)2,若2<x≤m时,y2≤x恒成立,求m的最大值.
y1=x2-x+1=(x-1)2+,所以将抛物线C1向下平移个单位得抛物线C2:y2=(x-1)2,解方程组2y=x得或,所以当2<x≤m时,y2≤x恒成立,则m的最大值为2+.
本题考点:
二次函数图象与几何变换.
问题解析:
先把y1=x2-x+1配成顶点式,易得抛物线C2:y2=(x-1)2,再求出抛物线C2与直线y=x的交点坐标,于是可得到y2≤x恒成立的m的范围,则可得到m的最大值.当前位置:
>>>如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2..
如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A、D,且AB=BD.(1)求点A的坐标:(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值______(直接写结果).
题型:解答题难度:中档来源:不详
(1)如图,连接AC、BC,设直线AB交y轴于点E,∵AB∥x轴,CD∥x轴,C、B为抛物线C1、C2的顶点,∴AC=BC,BC=BD,∵AB=BD,∴AC=BC=AB,∴△ABC是等边三角形,∴∠ACE=30°,设AE=m,则CE=3AE=3m,∵y1=x2+1,∴点C的坐标为(0,1),∴点A的坐标为(-m,1+3m),∵点A在抛物线C1上,∴(-m)2+1=1+3m,整理得m2-3m=0,解得m1=3,m2=0(舍去),∴点A的坐标为(-3,4);(2)如图2,连接AC、BC,过点C作CE⊥AB于点E,设抛物线y1=2x2+b1x+c1=2(x-h1)2+k1,∴点C的坐标为(h1,k1),设AE=m,∴CE=3m,∴点A的坐标为(h1-m,k1+3m),∵点A在抛物线y1=2(x-h1)2+k1上,∴2(h1-m-h1)2+k1=k1+3m,整理得,2m2=3m,解得m1=32,m2=0(舍去),由(1)同理可得,CD=BD=BC=AB,∵AB=2AE=3,∴CD=3,即CD的长为3,根据题意得,CE=32BC=32×3=32,∴点B的坐标为(h1+32,k1+32),又∵点B是抛物线C2的顶点,∴y2=a2(x-h1-32)2+k1+32,∵抛物线C2过点C(h1,k1),∴a2(h1-h1-32)2+k1+32=k1,整理得34a2=-32,解得a2=-2,即a2的值为-2;(3)根据(2)的结论,a2=-a1,12CD=-b22a2-(-b12a1)=b22a1+b12a1=b1+b22a1,根据(1)(2)的求解,CD=2×3a1,∴b1+b2=23.
马上分享给同学
据魔方格专家权威分析,试题“如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2..”主要考查你对&&求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2..”考查相似的试题有:
109315916954458701920768137762894246如图,将抛物线C1:y=-√3x?+√3沿x轴翻折,得抛物线C2.(1)请直接写出抛物线C2的表达式;(2)现将抛物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A_百度作业帮
如图,将抛物线C1:y=-√3x?+√3沿x轴翻折,得抛物线C2.(1)请直接写出抛物线C2的表达式;(2)现将抛物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A
如图,将抛物线C1:y=-√3x?+√3沿x轴翻折,得抛物线C2.(1)请直接写出抛物线C2的表达式;(2)现将抛物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴的交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情况?若存在,请求此时m的值;若不存在,请说明理由.
(1)y=√3x??-√3(2)①令-√3x??+√3=0x=±1所以C1与x轴的两个交点为(-1,0),(1,0)∴A(-1-m,0)B(1-m,0)同理:D(-1+m,0)E(1+m,0)当AD=1/3AE时,(-1+m)-(-1-m)=1/3[(1+m)-(-1-m)]m=1/2当AB=1/3AE时,(1-m)-(-1-m)=1/3[(1+m)-(-1-m)]m=2当m=1/2或2时,B、D是线段AE的三等分点②连结AN、NE、EM、MA,由题意得M(-m,√3),N(m,-√3)即M,N关于原点对称,∴OM=ON∵A(-1-m,0),E(1+m,0)∴A,E关于原点O对称,
∴OA=OE,∴四边形ANEM为平行四边形.
要使平行四边形ANEM为矩形,必需满足OM=OA,即m??+(√3)??=(-1-m)??∴.m=1∴当m=1时,以点A,N,E,M为顶点的四边形是矩形.如图,点A(3m,0),m>0,且OA=OB,点E在线段AB上,且BE=1/3AB,点P(3m,4m).以点B为顶点的抛物线记为C1:y1=-1/m乘以x²+n;以E点为顶点,且经过点P的抛物线记为C2:y2=ax²=bx+c.(1)分别求出抛物线C1_百度作业帮
如图,点A(3m,0),m>0,且OA=OB,点E在线段AB上,且BE=1/3AB,点P(3m,4m).以点B为顶点的抛物线记为C1:y1=-1/m乘以x²+n;以E点为顶点,且经过点P的抛物线记为C2:y2=ax²=bx+c.(1)分别求出抛物线C1
如图,点A(3m,0),m>0,且OA=OB,点E在线段AB上,且BE=1/3AB,点P(3m,4m).以点B为顶点的抛物线记为C1:y1=-1/m乘以x²+n;以E点为顶点,且经过点P的抛物线记为C2:y2=ax²=bx+c.(1)分别求出抛物线C1和C2的解析式(用含m的代数式表示),判断抛物线C1会经过点E吗?(2)当m变化时,若抛物线C1和C2中的y都随x的增大而减小,请你直接写出此时x的取值范围(3)在(2)的x取值范围下,设函数y3=y1-y2,求出函数y3与x的函数关系式,当x为何值时,函数y3有最大值,求出最大值(用含m的代数式表示);用某条线段能表示函数y3的最大值的几何意义,请你在图上画出这条线段MN.将抛物沿c1:y=- 3x2+ 3沿x轴翻折,得抛物线c2现将抛物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到_百度作业帮
将抛物沿c1:y=- 3x2+ 3沿x轴翻折,得抛物线c2现将抛物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到
将抛物沿c1:y=- 3x2+ 3沿x轴翻折,得抛物线c2现将抛物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.
(1)y= x2- .(2)①令- x2+ =0,得x1=-1,x2=1则抛物线c1与x轴的两个交点坐标为(-1,0),(1,0).∴A(-1-m,0),B(1-m,0).同理可得:D(-1+m,0),E(1+m,0).当AD= AE时,(-1+m)-(-1-m)= [((1+m)-(-1-m)],∴m= .当AB= AE时,(1-m)-(-1-m)= [(1+m)-(-1-m)],∴m=2.当m= 或2时,B,D是线段AE的三等分点.②存在.理由:连接AN,NE,EM,MA.依题意可得:M(-m,),N(m,- ).即M,N关于原点O对称,∴OM=ON.∵A(-1-m,0),E(1+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形.∵AM2=(-m+1+m)2+( )2=4,ME2=(1+m+m)2+( )2=4m2+4m+4,AE2=(1+m+1+m)2=4m2+8m+4,若AM2+ME2=AE2,则4+4m2+4m+4=4m2+8m+4,∴m=1此时△AME是直角三角形,且∠AME=90°.∴当m=1时,以点A,N,E,M为顶点的四边形是矩形.
我也在做这道题。。。=v=

我要回帖

更多关于 抛物线x1x2 y1y2 的文章

 

随机推荐