低温等离子消融体为什么能用于个高分子合成

仿绸涤纶的低温等离子体再改性
0前言仿绸涤纶将涤纶良好的物理机械性能和丝绸的轻盈、滑爽、柔软和悦目的风格有机地结合于一体,但由于涤纶本身的结构和整理工艺的特点(大多采用碱减量处理),导致其透气性差,染色性能受到限制。经过碱减量处理后的涤纶虽经充分的洗涤和中和,织物上仍带有碱性,造成分散染料在碱性条件下染色。若未经严格地筛选染料,染料结构中的酯基、酰胺基、氰基等,在碱性条件下易水解,导致染色织物色光萎暗。近年来,利用等离子体改性纺织纤维倍受人们的重视。本文选用氮气等离子体对涤纶进行改性,以改变其表面的润湿性能,增强其毛细管效应,进而改善其染色性能,同时改善仿绸涤纶的透气性。1试验1.1主要仪器及化学药品仪器HD-IB型冷等离子体改性设备(常州新区世泰等离子体技术开发有限公司),ZBW04019毛效测试仪(上海罗众科技研究所),RY-25016高温染样机(上海隆达化工公司),TC-PⅡG全自动测色色差计(南通宏大实验仪器有限公司),YG605型熨烫/升华色牢度测...&
(本文共2页)
权威出处:
【编者按】等离子体技术自上世纪60年代引入到纺织领域,以其对纺织品表面改性的物理过程,以及干态的加工方式等特点,挑战传统的以水为介质的化学湿加工方式。在当今倡导清洁生产、节约资源的形势下,无需化学品、无需耗用大量水和能源、无需进行高成本废水处理和对环境友好的等离子体处理技术更具吸引力,国内外都在加强等离子体技术在纺织领域的应用研究。为此,本刊特邀原上海市纺织科学研究院副院长、高级工程师裴晋昌先生撰写“低温等离子体物理化学基础及其应用”讲座,就低温等离子体的物理化学过程、低温等离子体对材料表面作用机理、低温等离子体化学聚合和接枝以及低温等离子体的工业应用等作了较为系统的介绍,以飱读者。1等离子体及其基本反应等离子体是一个非常广泛的概念,包含的内容也很繁杂。为了使一般科技工作者对其有个初步认识,本章主要就等离子体的概念,及其物理化学基本过程作简要地介绍。1.1等离子体概念等离子体是物质的第四态,即电离了的“气体”,它呈现出高度激发的...&
(本文共5页)
权威出处:
等离子体 (Plasma)是指气体在加热或者强电磁场作用下产生的高度电离的气体云 ,其所含的活性自由基及射线对微生物有较好的杀灭作用[1 ] ,但由于产生等离子体的方式不同 ,其对微生物的杀灭机制也不同。传统的产生等离子体的方式有两种 :一是大气压下的高电压气体击穿电离 (几千伏到上万伏 ) ,如相对低温的DBD技术 (Dielectricbarrierdischarge) ;二是真空室中的低温大面积放电。而APPJ(AtmosphericPressurePlasmaJet,常压低温射频 )这项新技术突破性地在大气压下产生了低温均匀等离子体。当前 ,APPJ的物理机制还有待进一步解释[1 2 ] ,而且其对微生物体的影响机制及杀灭机理也不清楚 ,已成为当前研究的热点。1 材料和方法1 1 菌种金黄色葡萄球菌 (Staphylococcusaureus,ATCC6 5 38)、大肠杆菌 (EscherichiacoliATCC80...&
(本文共3页)
权威出处:
随着现代工业、农业和交通运输等行业的快速发展,各种各样有害气体(VOCs,NOx,H2S,SO2等)的排放量也在迅速增加,严重危害着人类的健康和生态的平衡。怎样治理低浓度(体积分数1.0×10-4~1.0×10-3)、大流量的有害气体成为当前研究工作的热点。传统的处理方法有催化燃烧法、冷凝法和吸附法等。近年来发展低温等离子体和催化剂协同作用技术处理有害气体具有很多优点[1],已成为处理低浓度有害气体的重要技术,各国学者都在进行着积极的研究,并在反应机理和应用方面[2~4]取得了显著成果。文章介绍了低温等离子体和催化剂协同作用技术的机理、反应器形式以及在处理不同有害气体方面的研究进展。低温等离子体催化(non-thermal plasmacatalysis)主要指的是等离子体多相催化,即放电电极表面、器壁表面及涂层、置放的异相物质等对等离子体化学反应的催化作用,等离子体多相催化作用可以发生在等离子体区、等离子体余辉区、产物收集区(...&
(本文共6页)
权威出处:
等离子体物理告诉我们,电子在外加电场中加速获得能量后,与气体分子或原子发生碰撞进行能量交换,使气体分子或原子发生电离和离解,形成了由电子、离子、分子或原子组成的等离子体.等离子体分为热等离子体和低温等离子体两种.一般情况下,低温等离子体是由低压气体放电产生的.低温等离子体体系中存在着大量的电子、离子和自由基等化学活性基团,而体系的平均温度又很低,所以低温等离子体是一种具有较高化学活性的反应物,极易参与各种化学反应[1].随着等离子体化学的发展,利用等离子体的高化学活性进行合金的精炼日益受到重视.Mimura等人[2]研究发现,Ar-H2电弧热等离子体对熔融锆合金中的杂质元素Sn和Fe有脱除效果,且随着等离子体中H2含量的增加,Sn和Fe的脱除速率会越来越高.这种精炼方法可能的机理是气相边界层中的活性氢原子和蒸发出来的金属原子结合成气态氢化物而溶入至气相中并排除.Alemany等人[3,4]在利用电磁感应H2-O2等离子体处理硅液...&
(本文共5页)
权威出处:
低温等离子体催化是一种新兴的处理技术,该技术结合了自由基反应与催化反应的协同作用,具有优于单纯工艺处理效果的特点,因此在化工合成、有害气体净化等领域得到重视与研究[1-4].在气体净化方面,人们已开展了采用低温等离子体催化技术净化有机废气、烟气脱氮脱硫、尾气净化氮氧化物等方面的研究,证实了低温等离子体与催化剂之间具有协同净化的作用[5-9].目前低温等离子体催化反应装置的主要形式是两段式,即低温等离子体发生器与催化剂前后相接的结构,低温等离子体发生器采用介质阻挡放电形式,催化剂为球状颗粒载体,负载贵金属、CuO、V2O5以及分子筛Cu-ZSM-5等不同系列的催化活性组分.利用低温等离子体催化技术开展的尾气净化工作多集中在净化氮氧化物方面,对应用该技术综合处理一氧化碳、碳氢、氮氧化物废气的研究还不多;另外目前常采用的催化剂多为活性氧化铝球状颗粒载体催化剂,由这种催化剂所形成的填料床具有气流阻力大、抗振动磨损性差等问题,为此,作者研...&
(本文共4页)
权威出处:
扩展阅读:
CNKI手机学问
有学问,才够权威!
出版:《中国学术期刊(光盘版)》电子杂志社有限公司
地址:北京清华大学 84-48信箱 知识超市公司
互联网出版许可证 新出网证(京)字008号
京ICP证040431号
服务咨询:400-810--9993
订购咨询:400-819-9993
传真:010-
京公网安备75号论文发表客服QQ:
论文发表客服QQ:
论文发表电话:
论文发表投稿邮箱:
论文发表热线:
微信号咨询:低温等离子体对高分子材料表面的改性
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
低温等离子体对高分子材料表面的改性
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口低温等离子体工艺技术资料|辉低温等离子体|低温常压
&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&
&&没有公告
您现在的位置:&&>>&&>>&&>>&正文
低温等离子体工艺技术资料|辉低温等离子体|低温常压
&&&&&&&&&&★★★★★
【字体: 】
低温等离子体工艺技术资料|辉低温等离子体|低温常压
作者:&&&&机械来源:&&&&点击数:&&&&更新时间:
低温等离子体果蔬保鲜器低温等离子体室内空气净化器低温等离子体用于果蔬保鲜的方法及其装置使用低温等离子体工艺提高模具释放效果的方法一种低温等离子体裂解天然气制乙炔装置与工艺用于在大气压下产生低温等离子体的装置旋转式电晕放电低温等离子体源装置低温等离子体空气净化器水为原料的低温等离子体制氢方法、工艺及设备低温等离子体处理种子的方法及低温等离子体种子处理机常压低温等离子体纺织面料处理设备一种吸附法与低温等离子体相结合的室内空气净化方法一种沉积高质量薄膜低温等离子体装置过氧化氢真空等离子体低温灭菌装置利用低温等离子体处理工业废水的方法及处理装置低温等离子体协同直流电场汽车尾气净化器低温等离子体灭菌机在低温下利用H2O等离子体生长单壁碳纳米管的方法吸附-低温等离子体同步脱硫脱硝装置及其方法低温等离子体工业废气处理装置差分馈电介质阻挡放电低温等离子体装置真空低温等离子体沉积假捻器摩擦盘牙科综合诊台水系统低温等离子体净化消毒机用于MEMS应用的低温等离子体硅或硅锗一种低温等离子体驱动光催化气体净化装置颜料墨水数字喷墨印花用织物的低温等离子体处理工艺利用低温等离子体还原负载金属催化剂的方法常压低温冷等离子体放电通道装置一种大气压下低温等离子体制备负载型TiO2光催化剂的方法以等离子体增强化学气相沉积制造具低应力的低K值介电质的低温工艺低温等离子体纤维表面改性连续处理装置利用低温等离子体脱除固定源尾气中氮氧化物的净化方法大气压介质阻挡放电产生低温等离子体的射流装置一种常压低温等离子体除臭器低温等离子体果蔬食品解毒保鲜装置常压射频低温冷等离子体放电通道装置一种脉冲微波强化高压低温等离子体化学反应装置鼠笼式射频低温等离子体灭菌装置低温等离子体处理装置低温等离子体放电产生瞬态**基的捕集装置一种双孔式大气压辉光放电低温等离子体源低温等离子体氯化高分子聚合物的方法一种用于纤维表面改性的常压低温等离子体处理装置低温等离子体工业废气处理装置等离子体低温灭菌装置低温真空等离子体渗硫工艺方法利用氧化催化剂和低温等离子体的气体处理方法及气体处理装置低温等离子体技术处理油田污水工艺装置低温等离子体臭氧发生片无介质低温等离子体工业废气净化装置差分馈电介质阻挡放电低温等离子体装置一种处理挥发性有机物的低温等离子体装置常压低温等离子体产生装置低温等离子体吸附催化烟气脱硫装置及其脱硫方法低温常压等离子体分解有害气体的方法和装置一种脉冲微波强化高压低温等离子体化学反应装置一种低温等离子体结合共溶剂涤纶染色方法天然气低温等离子体转化碳二烃的装置及方法低温等离子体灭菌器灭菌剂容器羊毛纤维的低温等离子体处理电源低温等离子体灭菌器升降门复合膜低温等离子体集成发生器一种低温等离子体非热点火稳焰装置低温等离子体空气净化器一种电晕放电低温等离子体织物表面改性处理装置一种低温等离子体涤纶染色方法旋转放电低温等离子体有机废气净化装置一种低温等离子体汽车尾气净化装置一种低温等离子体诊断装置无介质低温等离子体加工食物装置低温型等离子体发生片一种采用低温等离子体技术处理废水的方法及其装置磁增强雾化电晕放电低温等离子体烟气除尘净化器一种处理挥发性有机物(VOCs的低温等离子体技术低温等离子体的化学检测方法低温等离子体工业废气处理装置用于尾气净化的整体式低温等离子体催化反应器过氧化氢等离子体和环氧乙烷两用低温灭菌系统大气压冷等离子体低温合成锐钛矿相纳米二氧化钛粉体的方法低温等离子体节油尾气净化装置低温等离子灭菌装置中等离子体的检测装置低温等离子体放电产生瞬态**基的捕集方法与装置一种处理挥发性有机物的低温等离子体装置一种同轴型低温等离子体物料处理器低温等离子体预氧化辅助NH3-SCR净化柴油机NOx的系统一种高频低温等离子体消毒灭菌方法和设备一种处理微生物污染物的低温等离子体技术辉光放电低温等离子体装置低温等离子体还原制备纳米金属的方法低温等离子体发生器低温等离子体处理工业废气中H2S和C2S的方法微波加热激发低温等离子体方法低温等离子体偶合光催化净化毒性物质的方法和装置羊毛纤维材料的低温等离子体处理工艺及设备用低温等离子体使果蔬食品解毒保鲜的方法数字喷墨印花用织物的常压低温等离子体预处理工艺具有自检功能的交、直流混合起辉低温等离子体灭菌装置裂隙孔膜表面改性低温等离子体处理器低温等离子体放电管分装式低温等离子体真空减压粮食贮藏保鲜装置一种低温等离子体接枝渗透汽化膜及其制法柴油机排气污染物低温等离子体净化装置一种低温常压等离子体改性负载型二氧化钛光催化剂的制备方法一种介质阻挡放电产生的低温等离子体室内空气净化方法低温等离子体原子发射光谱测定微量汞的装置及方法一种羊毛纤维的低温等离子体处理电源低温等离子体原子荧光光谱仪一种高频低温等离子体消毒灭菌装置低温等离子体工业废气处理技术低温等离子体冷冻装置低温等离子体光催化空气净化装置抗等离子体层的低温气浮沉积产生低温等离子体的电晕耦合介质阻挡放电装置低温等离子体原子荧光光谱仪并联式低温等离子体灭菌装置
<</ <低温等离子体工艺技术资料-辉低温等离子体-低温常压
</ <低温等离子体工艺技术资料-辉低温等离子体-低温常压
</ <百创提供 低温等离子体工艺技术资料-辉低温等离子体-低温常压
</ <低温等离子体工艺技术资料-辉低温等离子体-低温常压
机械录入:技术指导&&&&责任编辑:技术指导&
上一篇机械: 下一篇机械:
【】【】【】【】【】
  网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)低温等离子体,大气压辉光放电,电晕放电,介质阻挡放电
低温等离子体介绍
&&&&等离子体是物质存在的第四种状态。它由电离的导电气体组成,其中包括六种典型的粒子,即电子、正离子、负离子、激发态的原子或分子、基态的原子或分子以及光子。
&&&&事实上等离子体就是由上述大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性气体,也就是高度电离的气体。无论是部分电离还是完全电离,其中的负电荷总数等于正电荷总数,所以叫等离子体。
等离子体的分类
1、按等离子体焰温度分:
(1)高温等离子体:温度相当于108~109
K完全电离的等离子体,如太阳、受控热核聚变等离子体。
(2)低温等离子体:
热等离子体:稠密高压(1大气压以上),温度103~105K,如电弧、高频和燃烧等离子体。
冷等离子体:电子温度高(103~104K)、气体温度低,如稀薄低压辉光放电等离子体、电晕放电等离子体、DBD介质阻挡放电等离子体、索梯放电等离子体等。
2、按等离子体所处的状态:
(1)平衡等离子体:气体压力较高,电子温度与气体温度大致相等的等离子体。如常压下的电弧放电等离子体和高频感应等离子体。
(2)非平衡等离子体:低气压下或常压下,电子温度远远大于气体温度的等离子体。如低气压下DC辉光放电和高频感应辉光放电,大气压下DBD介质阻挡放电等产生的冷等离子体。
什么是低温(冷)等离子体?
&&&&冰升温至0℃会变成水,如继续使温度升至100℃,那么水就会沸腾成为水蒸气。随着温度的上升,物质的存在状态一般会呈现出固态→液态→气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢?
由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组成的混合物(蜡烛的火焰就处于这种状态)。我们把物质的这种存在状态称为物质的第四态,即等离子体态(plasma)。因为电离过程中正离子和电子总是成对出现,所以等离子体中正离子和电子的总数大致相等,总体来看为准电中性。反过来,我们可以把等离子体定义为:正离子和电子的密度大致相等的电离气体。
&&&&从刚才提到的微弱的蜡烛火焰,我们可以看到等离子体的存在,而夜空中的满天星斗又都是高温的完全电离等离子体。据印度天体物理学家沙哈(M?Saha,)的计算,宇宙中的99.9%的物质处于等离子体状态。而我们居住的地球倒是例外的温度较低的星球。此外,对于自然界中的等离子体,我们还可以列举太阳、电离层、极光、雷电等。在人工生成等离子体的方法中,气体放电法比加热的办法更加简便高效,诸如荧光灯、霓虹灯、电弧焊、电晕放电等等。在自然和人工生成的各种主要类型的等离子体的密度和温度的数值,其密度为106(单位:个/m3)的稀薄星际等离子体到密度为1025的电弧放电等离子体,跨越近20个数量级。其温度分布范围则从100K的低温到超高温核聚变等离子体的108-109K(1~10亿度)。 温度轴的单位eV(electron volt)是等离子体领域中常用的温度单位,1eV=11600K。
&&&&通常,等离子体中存在电子、正离子和中性粒子(包括不带电荷的粒子如原子或分子以及原子团)等三种粒子。设它们的密度分别为ne,ni,nn,由于准电中性,所以电离前气体分子密度为ne≈nn。于是,我们定义电离度β=ne/(ne+nn),以此来衡量等离子体的电离程度。日冕、核聚变中的高温等离子体的电离度都是100%,像这样β=1的等离子体称为完全电离等离子体。电离度大于1%(β≥10-2)的称为强电离等离子体,像火焰中的等离子体大部分是中性粒子(β&10-3
),称之为弱电离等离子体。
&&&&若放电是在接近于大气压的高气压条件下进行,那么电子、离子、中性粒子会通过激烈碰撞而充分交换动能,从而使等离子体达到热平衡状态。若电子、离子、中性粒子的温度分别为了Te,Ti,Tn,我们把这三种粒子的温度近似相等(Te≈Ti≈Tn)的热平衡等离子体称为热等离子体(thermal
plasma),在实际的热等离子体发生装置中,阴极和阳极间的电弧放电作用使得流入的工作气体发生电离,输出的等离子体呈喷射状,可称为等离子体炬(plasma
jet)或等离子体喷焰(plasma torch)等。
&&&&另一方面,数百帕以下的低气压等离子体常常处于非热平衡状态。此时,电子在与离子或中性粒子的碰撞过程中几乎不损失能量,所以有Te&&Ti
, Te&&Tn。我们把这样的等离子体称为低温等离子体(cold plasma)。当然,即使是在高气压下,低温等离子体也可以通过不产生热效应的短脉冲放电模式如电晕放电(corona
discharge)、介质阻挡放电(Dielectric Barrier Discharge, DBD)或滑动电弧放电(Glide
Arc Discharge or Plasma Arc)来生成。大气压下的辉光放电技术目前也已成为世界各国的研究热点。可产生大气压非平衡态等离子体的机理尚不清楚,在高气压下等离子体的输运特性的研究也刚刚起步,现已形成新的研究热点。()
低温等离子体的产生方法
&&&&辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于10mbar,其构造是在封闭的容器确胖昧礁銎叫械牡缂澹玫缱咏行栽雍头肿蛹し绷W佑杉し⑻(excited
state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。()
部分气体辉光放电的颜色
Cathode Layer
Negative Glow
Positive Column
orange-green
yellow-white
blue-purple
white-green
red-yellow
red-yellow
red-yellow
部分气体的辉光放电实例
电晕放电(Corona Discharge)
&&&&气体介质在不均匀电场中的局部自持放电。是最常见的一种气体放电形式。在曲率半径很大的尖端电极附近,由于局部电场强度超过气体的电离场强,使气体发生电离和激励,因而出现电晕放电。发生电晕时在电极周围可以看到光亮,并伴有咝咝声。电晕放电可以是相对稳定的放电形式,也可以是不均匀电场间隙击穿过程中的早期发展阶段。
  电晕放电的形成机制因尖端电极的极性不同而有区别,这主要是由于电晕放电时空间电荷的积累和分布状况不同所造成的。在直流电压作用下,负极性电晕或正极性电晕均在尖端电极附近聚集起空间电荷。在负极性电晕中,当电子引起碰撞电离后,电子被驱往远离尖端电极的空间,并形成负离子,在靠近电极表面则聚集起正离子。电场继续加强时,正离子被吸进电极,此时出现一脉冲电晕电流,负离子则扩散到间隙空间。此后又重复开始下一个电离及带电粒子运动过程。如此循环,以致出现许多脉冲形式的电晕电流,电晕放电可以在大气压下工作,但需要足够高的电压以增加电晕部位的电场。一般在高压和强电场的工作条件下,不容易获得稳定的电晕放电,亦容易产生局部的电弧放电(arc)。为提高稳定性可将反应器做成非对称(asymmetric)的电极形式(如下图所示)。电晕放电反应器的设计主要参考电源的性质而有所不同,有直流电晕放电(DC
corona)和脉冲式(pulsed corona)电晕放电。利用电晕放电可以进行静电除尘、污水处理、空气净化等。地面上的树木等尖端物体在大地电场作用下的电晕放电是参与大气电平衡的重要环节。海洋表面溅射水滴上出现的电晕放电可促进海洋中有机物的生成,还可能是地球远古大气中生物前合成氨基酸的有效放电形式之一。针对不同应用目的研究,电晕放电是具有重要意义的技术课题。()
电晕放电情形()
电晕放电实例
介质阻挡放电(Dielectric Barrier
Discharge, DBD)
&&&&介质阻挡放电(DBD)是有绝缘介质插入放电空间的一种非平衡态气体放电又称介质阻挡电晕放电或无声放电。介质阻挡放电能够在高气压和很宽的频率范围内工作,通常的工作气压为104~106。电源频率可从50Hz至1MHz。电极结构的设计形式多种多样。在两个放电电极之间充满某种工作气体,并将其中一个或两个电极用绝缘介质覆盖,也可以将介质直接悬挂在放电空间或采用颗粒状的介质填充其中,当两电极间施加足够高的交流电压时,电极间的气体会被击穿而产生放电,即产生了介质阻挡放电。在实际应用中,管线式的电极结构被广泛的应用于各种化学反应器中,而平板式电极结构则被广泛的应用于工业中的高分子和金属薄膜及板材的改性、接枝、表面张力的提高、清洗和亲水改性中。()
介质阻挡放电(DBD)常用结构
&&&&介质阻挡放电通常是由正弦波型(sinusoidal)的交流(alternating
current, AC)高压电源驱动,随着供给电压的升高,系统中反应气体的状态会经历三个阶段的变化,即会由绝缘状态(insulation)逐渐至击穿(breakdown)最后发生放电。当供o的电压比较低时,虽然有些气体会有一些电离和游离扩散,但因含量太少电流太小,不足以使反应区内的气体出现等离子体反应,此时的电流为零。随着供给电压的逐渐提高,反应区域中的电子也随之增加,但未达到反应气体的击穿电压(breakdown
avalanche voltage)时,两电极间的电场比较低无法提供电子足够的能量使气体分子进行非弹性碰撞,缺乏非弹性碰撞的结果导致电子数不能大量增加,因此,反应气体仍然为绝缘状态,无法产生放电,此时的电流随着电极施加的电压提高而略有增加,但几乎为零。若继续提高供o电压,当两电极间的电场大到足蚴蛊宸肿咏蟹堑耘鲎彩保褰蛭胱踊姆堑耘鲎捕罅吭黾樱笨占渲械牡缱用芏雀哂谝涣俳缰凳奔芭列(Paschen)击穿电压时,便产生S多微放电丝(microdischarge)导通在两极之间,同时系y中可明显观察到发光(luminous)的F象此时,电流会随着施加的电压提高而迅速增加。
&&&&在介质阻挡放电中,当击穿电压超过帕邢(Paschen)击穿电压时,大量随机分布的微放电就会出现在间隙中,这种放电的外观特征远看貌似低气压下的辉光放电,发出接近兰色的光。近看,则由大量呈现细丝状的细微快脉冲放电构成。只要电极间的气隙均匀,则放电是均匀、漫散和稳定的。这些微放电是由大量快脉冲电流细丝组成,而每个电流细丝在放电空间和时间上都是无规则分布的,放电通道基本为圆柱状,其半径约为0.1~0.3mm,放电持续时间极短,约为10~100ns,但电流密度却可高达0.1~1kA/cm2,每个电流细丝就是一个微放电,在介质表面上扩散成表面放电,并呈现为明亮的斑点。这些宏观特征会随着电极间所加的功率、频率和介质的不同而有所改变。如用双介质并施加足够的功率时,电晕放电会表现出“无丝状”、均匀的兰色放电,看上去像辉光放电但却不是辉光放电。这种宏观效应可通过透明电极或电极间的气隙直接在实验中观察到。当然,不同的气体环境其放电的颜色是不同的。
&&&&虽然介质阻挡放电已被开发和广泛的应用,可对它的理论研究还只是近20年来的事,而且仅限于对微放电或对整个放电过程某个局部进行较为详尽的讨论,并没有一种能够适用于各种情况DBD的理论。其原因在于各种DBD的工作条件大不相同,且放电过程中既有物理过程,又有化学过程,相互影响,从最终结果很难断定中间发生的具体过程。
&&&&由于DBD在产生的放电过程中会产生大量的自由基和准分子,如OH、O、NO等,它们的化学性质非常活跃,很容易和其它原子、分子或其它自由基发生反应而形成稳定的原子或分子。因而可利用这些自由基的特性来处理VOCs,在环保方面也有很重要的价值。另外,利用DBD可制成准分子辐射光源,它们能发射窄带辐射,其波长覆盖红外、紫外和可见光等光谱区,且不产生辐射的自吸收,它是一种高效率、高强度的单色光源。在DBD电极结构中,采用管线式的电极结构还可制成臭氧O3发生器。现在人们已越来越重视对DBD的研究与应用。()
介质阻挡放电(DBD)实例
绝缘强度(kV/mm)
Fused Quartz
Polyethylene
Polystyrene
Pyranol Oil
Pyrex Glass
Silicone Oil
Strontium Titanate
Titanium Dioxide
Water (20℃)
Water (25℃)
常见物质的介电系数和绝缘强度()
&&&&射频低温等离子体是利用高频高压使电极周围的空气电离而产生的低温等离子体。由于射频低温等离子的放电能量高、放电的范围大,现在已经被应用于材料的表面处理和有毒废物清除和裂解中。射频等离子可以产生线形放电,也可以产生喷射形放电()
射频单电极低温等离子放电
射频低温等离子喷枪
滑动电弧放电(Glide Arc
Discharge or Plasma Arc)产生低温等离子体
&&&&滑动电弧放电等离子体通常应用于材料的表面处理和有毒废物清除和裂解。下图中的滑动电弧由一对像图中所示的延伸弧形电极构成。电源在两电极上施加高压引起电极间流动的气体在电极最窄部分电击穿。一旦击穿发生电源就以中等电压提供足以产生强力电弧的大电流,电弧在电极的半椭圆形表面上向右膨胀,不断伸长直到不能维持为止。电弧熄灭后重新起弧,周而复始。其视觉观看滑动电弧放电等离子体就像火焰一般,但其平均温度却比较低即使将餐巾纸放在等离子体焰上也不会燃烧。它又被称为“索梯”(Jacog's
Ladder)。滑动电弧放电产生的低温等离子体为脉冲喷射,但可以得到比较宽的喷射式低温等离子体炬(plasma torch)。
滑动电弧放电原理
滑动电弧放电实例
射流低温等离子放电(Jet Discharge)
几十年来,等离子体炬(plasma torch)的个工业应用已经众所周知,例如,氩弧焊、空气等离子体切割机和等离子体喷涂等。这些设备中的核心部件通常称为等离子体炬,其等离子体中心温度达数千度,是&热&等离子体。
近年来,人们为了进行有机材料,例如橡胶表面进行处理,以改善表面附着力,将等离子体炬的技术低温化和小型化,将&热弧&变为&冷弧&研制成射流低温等离子表面处理设备,喷枪出口温度仅数百度,甚至更低,并且已经开始向家用电器和汽车工业推广应用。有些高技术公司,例如中国的CORONA
Lab.将这种技术产品化,可以用于高速在线处理。
1. 大气射流低温等离子表面处理的原理
流经冷弧等离子体射流枪的空气气流可以产生包括大量的氧原子在内的氧基活性物质,氧基等离子体照射材料表面,可以使附着于材料表面上的有机污染物&C&元素的分子分离,并变成二氧化碳后被清除;同时可以提高接触性能,从而可以提高接合强度和可靠性。
2. 大气射流低温等离子表面处理的工业应用
a) 不锈钢薄板对焊处的焊前处理
不锈钢薄板对焊在工业中应用很普遍,例如太阳能热水器的内桶就是用0.4mm的不锈钢薄板卷成圆筒对焊制成。为了达到焊接要求,必须对焊接处进行必要的清洗。目前的清洗方法是湿法-人工用化学清洗剂擦洗,清洗成本高,有污染,很难实现自动化。
大气射流低温等离子清洗技术是干法,运用于薄板对焊的前处理,可代替传统的人工用化学清洗剂擦拭,降低了清洗成本,可提高焊接质量,减少对环境的污染,可实现焊接区清洗的自动化。
b) 塑料板的表面处理
塑料类,例如木塑是可以代用木材的新型材料,但表面油漆相当不易,这就大大限制了应用范围。如果用化学方法处理,价格高,污染大。为此,用大气射流低温等离子处理则材料表面会发生明显的变化:颜色略有变浅,反光度降低,呈亚光性;用手触摸可以感觉到表面略有粗糙;使喷漆的附着性能大大增强。
经等离子体处理前后的附着力可以测试。测试方法:用划刀在待测部件表面划出垂直井字结构划痕,用软毛刷轻刷划线表面去掉碎沫。用透明胶带贴于划线上,胶带与样品间应无气泡,保持1~2分钟;以约60度角度恒定速度将胶带撕起。观察划线及正方形的完整度以判断附着力的大小。
c) 橡胶制品的处理
橡胶在我们日常生活中大量使用,例如汽车的门封条。它的表面须要上漆或织绒。如果不经过低温等离子处理,则不易粘接。如果用化学清洗,既是离线的,又会污染环境。用在线等离子体处理是理想的解决办法。
d) 用于玻璃和金属平板处理
空气等离子体射流可以处理玻璃和金属表面,不但有效地清除了来自于大气中浮游灰尘产生的有机污染物,而且改变了表面的性能且持续性足够长。因而可以提高产品的接合强度。此外,常压等离子体清洗还可以用于有机材料和金属材料表面。
射流低温等离子放电
射流低温等离子放电
汽车刹车块的处理
橡胶封条的处理
大气压下辉光放电(APGD)
&&&&经过近20年的发展,低气压低温等离子体已取得了很大进展。但由于其运行需抽真空、设备投资大、操作复杂、不适于工业化连续生产,限制了它的广泛应用。显然,最适合于工业生产的是大气压下放电产生的等离子体。大气压下的电晕放电和介质阻挡放电目前虽然被广泛地应用于各种无机材料、金属材料和高分子材料的表面处理中,但却不能对各种化纤纺织品、毛纺织品、纤维和无纺布等材料进行表面处理。低气压下的辉光放电虽然可以处理这些材料,但存在成本、处理效率等问题,目前无法规模化应用于纺织品的表面处理。长期以来人们一直在努力实现大气压下的辉光放电(APGD)。1933年德国Von
Engel首次报道了研究结果 ,利用冷却的裸电极在大气压氢气和空气中实现了辉光放电,但它很容易过渡到电弧,并且必须在低气压下点燃,即离不开真空系统。1988年,Kanazawa等人报道了在大气压下使用氦气获得了稳定的APGD的研究成果,并通过实验总结出了产生APGD要满足的三个条件:(1)激励源频率需在1kHz以上;(2)需要双介质DBD;(3)必须使用氦气气体。此后,日本的Okazaki、法国的Massines和美国的Roth研究小组分别采用DBD的方法,用不同频率的电源和介质,在一些气体和气体混合物中宣称实现了大气压下“APGD”。1992年,Roth小组在5mm氦气间隙实现了APGD,并声称在几个毫米的空气间隙中也实现了APGD,
主要的实验条件为湿度低于15% 、气体流速50l/min、频率为3kHz的电源并且和负载阻抗匹配。他们认为“离子捕获”是实现APGD的关键。Roth等人用离子捕获原理解释APGD,即当所用工作电压频率高到半个周期内可在极板之间捕获正离子,又不高到使电子也被捕获时,将在气体间隙中留下空间电荷,它们影响下半个周期放电,使所需放电场强明显降低,有利于产生均匀的APGD。他们在实验室的一台气体放电等离子体实验装置中实现了Ar、He和空气的“APGD”。1993年Okazaki小组利用金属丝网(丝直径0.035mm,325目)电极为PET膜(介质)、频率为50Hz的电源,在1.5mm的气体(氩气、氮气、空气)间隙中做了大量的实验,并宣称实现了大气压辉光放电。根据电流脉冲个数及Lisajous图形(X轴为外加电压,Y轴为放电电荷量)的不同,他们提出了区分辉光放电和丝状放电的方法,即若每个外加电压半周期内仅1个电流脉冲,并且Lisajous图形为两条平行斜线,则为辉光放电。若半周期内多个电流脉冲,并且Lisajous图形为斜平行四边形,则为丝状放电。法国的Massines小组、加拿大的Radu小组和俄罗斯的Golubovskii小组对APGD的形成机理也进行了比较深入的研究工作。Massines小组对氦气和氮气的APGD进行了实验研究和数值模拟
,除了测量外加电压和放电电流之外,他们用曝光时间仅10ns的ICCD相机拍摄了时间分辨的放电图像,用时空分辨的光谱测量记录了放电等离子体的发射光谱,并结合放电过程的一维数值模拟,他们认为,氮气中的均匀放电仍属于汤森放电,而氦气中均匀放电才是真正意义上的辉光放电,或亚辉光放电。他们还认为,得到大气压下均匀放电的关键是在较低电场下缓慢发展大量的电子雪崩。因此,在放电开始前间隙中必须存在大量的种子电子,而长寿命的亚稳态及其彭宁电离可以提供这些种子电子。根据10ns暴光的ICCD拍摄的放电图像,Radu小组发现,在大气压惰性气体He、Ne、Ar、Krypton的DBD间隙中,可以实现辉光放电。除了辉光放电和丝状放电之外,还存在介于前两者之间的第三种放电模式--柱状放电。
从上个世纪末,国内许多单位如科罗纳实验室、清华大学、大连理工大学、华北电力大学、西安交通大学、华中科技大学、中科院物理所、河北师范大学等先后开始了对APGD的研究。由于APGD在织物、镀膜、环保、薄膜材料等技术里域有着诱人的工业化应用前景,在大气压下和空气中实现辉光放电产生低温等离子体一直是国内外学者探寻的研究重点和热点。2003年,国家自然科学基金委员会将“大气压辉光放电”列为国家重点研究项目。APGD的研究也取得了一些进展,如He、Ne、Ar、Krypton惰性气体在大气压下基本实现了APGD,空气也已经实现了用眼睛看上去比较均匀的准“APGD”。目前,对APGD的研究结果和认识是仁者见仁,智者见智。APGD的研究方兴未艾,已经受到国内外许多大学和研究机构的广泛重视。由于大气压辉光放电目前还没有一个认可标准,(只要选择一定的介质阻挡装置、频率、功率、气流、湿度等)许多实验所看到的放电现象和辉光放电很相似即出现视觉特征上呈现均匀的“雾状”放电,而看不到丝状放电,但这种放电现象是否属于辉光放电目前还没有共识和定论。
科罗纳实验室实现的APGD
次大气压下辉光放电(HAPGD)产生低温等离子体
&&&&由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出现击穿和燃烧并且处理温度接近室温。次大气压辉光放电技术目前可用于低温材料、生物材料、异型材料的表面亲水处理和表面接枝、表面聚合、金属渗氮、冶金、表面催化、化学合成等工艺。由于是在次大气压条件下的辉光放电,处理环境的气氛浓度高,电子和离子的能量可达10eV以上。材料批处理的效率要高于低气压辉光放电10倍以上。
可处理金属、非金属、(碳)纤维、金属纤维、微粒、粉末等。
次大气压下辉光放电效果实例
低温等离子体的应用领域
&&&&低温等离子体物理与技术经历了一个由60年代初的空间等离子体研究向80年代和90年代以材料为导向研究领域的大转变,高速发展的微电子科学、环境科学、能源与材料科学等,为低温等离子体科学发展带来了新的机遇和挑战。
&&&&现在,低温等离子体物理与应用已经是一个具有全球影响的重要的科学与工程,对高科技经济的发展及传统工业的改造有着巨大的影响。例如,1995年全球微电子工业的销售额达1400亿美元,而三分之一微电子器件设备采用等离子体技术。塑料包装材料百分之九十都要经过低温等离子体的表面处理和改性。科学家预测:二十一世纪低温等离子体科学与技术将会产生突破。据估计,低温等离子体技术在半导体工业、聚合物薄膜、材料防腐蚀、等离子体电子学、等离子体合成、等离子体冶金、等离子体煤化工、等离子体三废处理等领域的潜在市场每年将达一千几百亿美元。
&&&&等离子体辅助加工被用来制造特种优良性能的新材料、研制新的化学物质和化学过程,加工、改造和精制材料及其表面,具有极其广泛的工业应用--从薄膜沉积、等离子体聚合、微电路制造到焊接、工具硬化、超微粉的合成、等离子体喷涂、等离子体冶金、等离子体化工、微波源。等离子体辅助加工已开辟的和潜在的应用领域包括:
●半导体集成电路及其它微电子设备的制造
●工具、模具及工程金属的硬化
●药品的生物相溶性包装材料的制备
●表面防蚀及其它薄层的沉积
●特殊陶瓷(包括超导材料)
●新的化学物质及材料的制造
●金属的提炼
●聚合物薄膜的印刷和制备
●有害废物的处理
●磁记录材料和光学波导材料
●精细加工
●照明及显示
●电子电路及等离子体二极管开关
●等离子体化工(氢等离子体裂解煤制乙炔、等离子体煤气化、等离子体裂解重烃、等离子体制炭黑、等离子体制电石等)
对上述某些部分领域的目前潜在市场估计:
●半导体工业约为260亿美元
●等离子体电子学约为400亿美元
●工具及模具硬化约为20亿美元
●作记录和医用聚合物薄膜领域约为几十亿美元的市场
对一些新的有活力的市场估计:
●金属腐蚀防护约为500亿美元
●优质陶瓷约为50亿美元
● 在废物处理、金属提练、包装材料及制药业中的应用约为几十亿美元市场。
&&&&低温等离子体物理与应用是一个具有全球性影响的重要的科学与工程,对全世界的高科技工业发展及许多传统工业的改造都有着直接的影响,二十一世纪初等离子体辅助加工会产生重要的突破,而这些突破对高科技产业的保护及提高其在市场中的地位将是极为重要的,例如近十年来,低温等离子体的物理研究和技术应用在很多方面有了突破性的进展,最有代表性的是微电子工业等离子体的应用。1995年的微电子工业的全球销售额已达1400亿美元,其中三分之一的微电子器件的设备是采取等离子体技术。以&奔腾&芯片为代表的半导体微处理器的复杂生产过程中,三分之一是与等离子体有关的。现代塑料包装产品中的印刷、复合、涂布等工艺百分之九十都依赖低温等离子体的处理。

我要回帖

更多关于 低温等离子消融术 的文章

 

随机推荐