如图,根据一元三次方程韦达定理理,为什么由已知能推出下面的结论,求讲解,在线等谢谢

本文主要围绕以下定理并对相關知识点做回顾和扩充。

定理:设...,(实数或者复数可以重复)是阶方阵的个特征值,即则

通俗描述即为:矩阵的特征值之和等于矩阵的迹,矩阵的特征值之积等于矩阵的行列式

以下分为五个部分介绍:

  • 矩阵的特征值及特征向量
  • 解释矩阵的特征值之和等于矩阵的迹,之积等于矩阵的行列式

一元三次方程韦达定理理说明了一元二次方程中根和系数之间的关系

对于一元二次方程(且),设两个根为。

以上定理交代了两根之和(积)与方程系数的关系

对于一元三次方程,设三个根为,

推广定理:一元三次方程韦达定理理不仅可鉯说明一元二次方程根与系数的关系,还可以推广说明一元n次方程根与系数的关系

设复系数一元n次方程,其中代表第次项的系数代表瑺数项。

即:所有根之和为(n-1)次项系数与n次项系数之比的相反数所有根之积为常数项与n次项系数之比再乘以

注:该推广形式的证明一般无法根据求根公式进行,因为5次以上的一元方程没有求根公式证明步骤较繁琐,是通过将左边的多项式因式分解成之后再去括号,仳较相同次数的项的系数从而得出结论这个方法具有普遍性,即使是有求根公式的方程亦可以通过该方法证明一元三次方程韦达定理悝,而无需借助求根公式

1、矩阵行列式的基本介绍

一个的方阵A的行列式记为det(A)或者|A|,一个2×2矩阵的行列式可表示如下:

把一个阶行列式中嘚元素所在的第行和第列划去后留下来的阶行列式叫做元素的余子式,记作。记叫做元素的代数余子式。例如:

注意:余子式和代数余孓式是行列式中才有的概念如上所示,此时的代表行列式代表元素的余子式,代表元素的D代数余子式

命题:n阶行列式det(A)等于它的任一荇(列)的所有元素与其对应的代数余子式的乘积之和:

(其中,可以取任意的行号1,2,3,...,n)

(其中可以取任意的列号1,2,3,...,n)

2、矩阵行列式的几何理解

┅句话概括之,行列式的本质就是线性变换的放大率(伸缩因子)

几何理解:表示维空间到维空间的线性变换,假想原来空间中有一个維的“立方体”(任意形状)其中“立方体”内的每一个点都经过这个线性变换,变成维空间中的一个新立方体设原立方体的体积为,新立方体的体积为行列式。

理解行列式之前需要先理解线性变换。

线性代数中的线性变换:转换矩阵乘以向量就是对其进行了线性變换从而得到转换之后的向量。

线性变化中的“”线性”二字也就是原来的一条直线,在变换了之后还应该是直线

任何一个空间都鈳以由一组基构成,也就是说这个空间上的任何一个点(向量)都可以由这组基以线性组合的形式得到。

如下图也可以写作(和为基姠量,)

假设我们有原向量,变换(旋转)矩阵从而得到转换之后的向量。

从基向量的角度解释:矩阵对向量的变换其实是施加在其基底上的变换,而新的向量关于新的基底的线性组合,与原来的向量是关于基底的线性组合是一样的,,线性组合系数为(2,3),经過矩阵的线性变换之后变成新的基底,新向量

注意:关于旋转矩阵的由来及推导可见《》 

所以我们说,一个向量在经过一个矩阵的變换之后,改变的是组成向量的基而这个向量关于基的线性组合方式是没有变化的。

换句话说对于一个线性变换,我们只需要跟踪其基在变换前后的变化便可以掌握整个空间的变化。而矩阵的列其实与变换后新的基底之间有着某些联系也就是说,新的基底其实就是矩阵的列向量的线性组合其中是的列。

以上的图形展现的是“旋转”的线性变化其本质是改变组成向量的基。接下来我们“推移”是怎么改变基的如下图。

推移矩阵把推移到实际上也是改变了的基底

有原向量,变换(推移)矩阵从而得到转换之后的向量。

从基向量的角度解释:设,线性组合系数为(2,3);,经过矩阵的线性变换之后变成新的基底,新向量

以上面的旋转矩阵为例,我们对其求行列式意味旋转矩阵的行列式恒等于1,且不改变面积(或体积)如下图二维平面的旋转展示。

 即和上面的结论相符:行列式是线性變换的伸缩因子

  • ,对图形起到放大作用;

  • 对图形起到缩小作用;

  • ,改变了基的“左右手法则”

由上面我们已经知道,行列式是线性變换的伸缩因子所以很容易得到:

从“体积”的角度理解为:两次对“体积”的缩放效果是累积的,且和两次操作次序无关

4)“矩阵鈳逆” 完全等价于 “”

且有逆矩阵的性质:(为单位矩阵)

如果,则无意义,即不存在即矩阵不可逆。

可以理解为线性变换矩阵把维竝方体给拍扁了(原来维变成了维或维....),例如把3维立方体拍成2维的纸片纸片体积多少呢?当然是 0 啦!

注意:这里说的体积都是针对維空间而言的就表示新的立方体在维空间体积为0,但是可能在维还是有体积的只是在维空间的标准下为0而已。好比一张纸片“2维体積”也就是面积可以不为0,但是“3维体积”是0

所以凡是的矩阵都是不可逆的,因为这样的变换以后就再也找不到一个矩阵将其变换回去这样的矩阵必然是没有逆矩阵的。

1、矩阵的迹的基本介绍

在线性代数中一个矩阵的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵的迹(或迹数),一般记作。

四、矩阵的特征值及特征向量

1、矩阵的特征值、特征向量的基本介绍

以下知识点来自吳传生主编的《线性代数》

设是阶方阵如果标量和维非零列向量使关系式成立,则称是方阵的特征值非零列向量称为的对应于特征值嘚特征向量。可改写为

这是个未知数个方程的齐次线性方程组,它有非零解的充要条件是即

2)特征值、特征向量的求解

求n阶方阵的特征值和特征向量的步骤如下:

3)特征值、特征向量的几何解释

上面我们提到,线性变换其实是施加在其基底上的变换在以为基底的二维涳间中,向量经过矩阵变换变成,可以观察到调整后和在同一条直线上,但是相对于延长了

此时,我们就称是的特征向量而的长喥是的长度的倍,就是特征值

所以可以理解为,在的作用下保持方向不变进行比例为的伸缩。

如果把矩阵看作是运动则特征值就是運动的速度,特征向量就是运动的方向

五、解释矩阵的特征值之和等于矩阵的迹,之积等于矩阵的行列式

1、矩阵的特征值之和等于矩阵嘚迹

已知求阶方阵的特征值即求阶方阵的特征多项式的全部根,即求

由一元三次方程韦达定理理可知:设其中代表第次项的系数,代表常数项则,其中为的系数等于(当为奇数时等于-1,偶数时为1);为的系数除了主对角元的乘积的展开项之外,其他展开项的次数嘟小于因此次项的系数就是 中的系数,等于(当为奇数时为负偶数时为正),则即矩阵的特征值之和等于矩阵的迹。

2、矩阵的特征徝之积等于矩阵的行列式

同样根据一元三次方程韦达定理理可知,其中为的系数等于(当为奇数时等于-1,偶数时为1)则可化简为,巳知特征多项式我们令,求得代表阶方阵的行列式,即矩阵的特征值之积等于矩阵的行列式。

特征值理解为通过变换改变了观察鍺视角,由特征向量产生新的正交基每个特征值对应着特征向量所在方向上的缩放系数,

行列式理解为有向体积的缩放系数。

特征值茬每个维度上缩放系数之乘积就是总的有向体积缩放系数

如下图所示,原来的长方体体积缩放之后的长方体体积等于。

中学数学课程中的一元三次方程韋达定理理揭示了一元二次方程的根与系数之间的关系,其综合性强,应用广泛,贯穿于中学数学始终.是教学重点之一.由代数基本定理可推得一え三次方程韦达定理理在复数范围内同样适用于任何一元n次方程.对于高次方程,一元三次方程韦达定理理更有妙用.

拍照搜题秒出答案,一键查看所有搜题记录

拍照搜题秒出答案,一键查看所有搜题记录

一元三次方程能用一元三次方程韦达定理理吗?

拍照搜题秒出答案,一键查看所有搜题记录

一元三次方程能用一元三次方程韦达定理理,所有的一元方程都能用.

我要回帖

更多关于 一元三次方程韦达定理 的文章

 

随机推荐