如何利用离心制冷压缩机性能曲线的性能曲线评价其特性

内容提示:离心制冷压缩机性能曲线的性能曲线

文档格式:PPT| 浏览次数:445| 上传日期: 16:26:11| 文档星级:?????

全文阅读已结束如果下载本文需要使用

该用户还上传了这些文檔

一、离心式制冷压缩机性能曲线嘚发展概况

离心式制冷压缩机性能曲线是透平式制冷压缩机性能曲线的一种具有处理气量大,体积小结构简单,运转平稳维修方便鉯及气体不受污染等特点。随着气体动力学研究的成就使离心制冷压缩机性能曲线的效率不断提高又由于高压密封,小流量窄叶轮的加笁多油楔轴承等技术关键的研制成功,解决了离心制冷压缩机性能曲线向高压力宽流量范围发展的一系列问题,使离心制冷压缩机性能曲线的应用范围大为扩展以致在很多场合可取代往复活塞式制冷压缩机性能曲线。

二、离心制冷压缩机性能曲线的工作原理和基本结構

一般说提高气体压力的主要目标就是增加单位容积内气体分子的数量,也就是缩短气体分子与分子之间的距离为了达到这个目标,除了采用挤压元件来挤压气体的容积式压缩方法以外还有一种用气体动力学的方法,即利用机器的做功元件(高速回转的叶轮)对气体莋功使气体在离心力场中压力得到提高,同时动能也大为增加随后在扩流道中流动时这部分功能又转变为静压能,而使气体压力进一步提高这就是离心式制冷压缩机性能曲线的工作原理或增压原理。

下面分别叙述制冷压缩机性能曲线流道中各组成部分(或称为通流元件)的作用

吸气室:制冷压缩机性能曲线每段的第1级入口都设有吸气室,其作用是将气体从进气管均匀地导入叶轮的入口以减小气体进叺时的流动损失

叶轮:叶轮是离心制冷压缩机性能曲线中最重要的一个部件,驱动机的机械即通过此高速回转的叶轮叶片对气体作功而使气体获得能量它是制冷压缩机性能曲线中唯一的作动部件,故亦称工作轮叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也没有輪盖的半开式叶轮

扩压器:气体从叶轮流出时,具有很高的速度为了使这部分速度能尽可能地转化为压力能,在叶轮外缘的周围设置叻流通截面逐渐扩大的流通空间这就是扩压器。扩压器是由前后隔板组成的环形通道其中不装叶片的称为无叶扩压器,装有叶片的称為叶片扩压器

弯道:为了把从扩压器流出来的气体引导到下一级去进行再压缩,在扩压器外围设置了使气体由离心方向改变为向心方向嘚环形通道称为弯道。弯道是由隔板和气缸内壁组成的环形空间

回流器:为了使气流以一定方向(一般是轴向)均匀地进入下一级的葉轮入口,又在弯道的出口设置了回流器使气体依靠回流器中的叶片的导流作用均匀地向心流动,然后流入下一级叶轮回流器是由两塊隔板和装在隔板之间的叶片构成的。

蜗壳:蜗壳的作用是将由扩压器(或由叶轮)出来的气流有序地汇集起来而引出制冷压缩机性能曲線在有些情况下,由于蜗壳中的气流速度有所下降这时蜗壳也可起一定的扩压作用。

制冷压缩机性能曲线中间各级一般是由叶轮、扩壓器、弯道及回流器组成;第1级还带有吸气室、末级则有蜗壳但没有回流器,末级也可能没有扩压器

除了以上所述直接使气体得到压縮的通流元件以外,离心制冷压缩机性能曲线还具有以下几个重要零部件:

1、密封件:为了减少机内的气体从高压处向低压处泄漏在各級叶轮的进口圈外径处均设有轮盖密封,在级与级之间则有级间密封这种密封通常是用非接触式的迷宫式密封(或称梳齿式密封)。此外在转轴伸出机外之处也有密封,称为轴端密封简称轴封。轴封的型式对于低压密封也常用边宫式的密封对于高压密封则大多用浮環油膜密封或机械密封。

2、平衡盘:为了减少或平衡掉离心制冷压缩机性能曲线转子受到机内气体压力的作用而产生的不平衡轴向力通瑺在轴上靠近最后一级叶轮处装有一旋转圆盘,即为平衡盘平衡盘的外缘和气缸壳体之间也设有迷宫密封。使平衡盘的内侧和高压气体楿通另一侧则与低压(或制冷压缩机性能曲线进气口)相通。转子受到的未被平衡盘完全平衡的残余轴向力则由止推轴承加以承担

3、軸承:离心制冷压缩机性能曲线是高速回转机械,除了小型制冷压缩机性能曲线有采用流动轴承的以外绝大多数采用特殊型式的动压滑動轴承,有支撑轴承(或称径向轴承)及止推轴承两种支持轴承承受制冷压缩机性能曲线转子的重力与其他径向力,止推轴承则主要承擔转子所受的不平衡轴向力并且保证转子的轴向定位,避免在机器运行时发生转子与定子相碰离心制冷压缩机性能曲线转子属行高速輕载转子,为了保证其在轴承中能形成理想的油膜并防止轴承油膜振荡的不正常现象出现,一般都采用多块可倾瓦轴承或椭圆形等特殊滑动轴承多块可倾瓦轴承是利用几千瓦块在其支点附近作轻微摇摆以形成多油楔,使高速转轴轴颈得到及时的足够的油润滑并且运转穩定。

4、联轴器:由于离心制冷压缩机性能曲线具有高速回转大功能以及运转时难免有一定振动的特点,所用的联轴器既要能够传递大扭矩又要允许径向及轴向有少许位移,所以一般常用的是齿型联轴节依靠齿型的啮合传递扭矩,这种联轴节需要润滑剂近年来国外創造了一种鼓膜型联轴器,利用膜片传递扭矩膜片还可有少许变形。这种联轴器不需要润滑剂制造也容易,很受欢迎

离心制冷压缩機性能曲线的驱动机除了中、小型制冷压缩机性能曲线有用电动机以外,一般是用汽轮机或燃气轮机直接驱动这样既可以满足大功率、高转速的要求,又可以直接利用工厂的副产品——高压蒸汽或高温燃气作为动力此外采用这类驱动机还可以使制冷压缩机性能曲线采用調节转速的方法来调节制冷压缩机性能曲线流量或压力,这种调节方法比较经济

离心制冷压缩机性能曲线也有冷却水系统及要求很高的潤滑油系统。有时还有增速箱以提高制冷压缩机性能曲线整机或某一转子的转速离心制冷压缩机性能曲线的自控系统比活塞式制冷压缩機性能曲线的要求为高,除了常规的操作参数测量、显示以外还有喘振控制系统、轴位移及振动的指示及报警、自动停车等安全设施。

彡、离心式制冷压缩机性能曲线的性能及调节

反映离心式制冷压缩机性能曲线性能的主要参数有容积进气量Qj、压力比ε(或排气压力ㄗ,压力差△ㄗ,及能量头h)、功率N和效率η。随着进气量变化其它各性能参数也将发生相应的变化,故常以曲线形式来表现制冷压缩机性能曲线的性能变化关系例如压力比曲级ε—Qj(或ㄗ—Qj、△ㄗ—Qj及h—Qj曲线),功率曲线N—Qj及效率曲线η—Qj等也有采用无因次参数表示的通鼡性能曲线例如:ψ— 曲线(即能量头系数—流量系数)等。图4-49是某离心式制冷压缩机性能曲线的性能曲线图它是制冷压缩机性能曲线運行工况的图象表示,是制冷压缩机性能曲线选择型式规格、操作运行以及进行性能调节的依据所以弄清这些性能曲线的特点,了解影響制冷压缩机性能曲线性能的各种因素从而灵活地掌握与运用它是十分重要的事情。

性能曲线中的Qj表示制冷压缩机性能曲线进气状态下嘚容积流量η则常以多变效率ηpol表示,N一般是指轴功率

1、离心式制冷压缩机性能曲线级的性能曲线一般具有以下特点

(1)随着流量的減小,制冷压缩机性能曲线能提供的压力比将增大在最小流量时,压力比达到最大反过来说,如果制冷压缩机性能曲线的背压有所降低的话其流量也将自动增加。离心制冷压缩机性能曲线流量和压力比的关系是一一对应的流量与其它参数的关系也是对应的关系,表現在各条性能曲线上

(2)离心式制冷压缩机性能曲线有最大流量和最小流量两个极限流量;当然,排出压力也有最大值和最小值

(3)效率曲线有最高效率点,离开该点的工况效率下降较快;

(4)功率N与Ghrh大致成正比所以功率曲线一般是随Qj增加而向上倾斜,但当ε—Qj曲线姠下倾斜很快时功率曲线也可能先向上倾斜而后逐渐向下倾斜。

2、最大流量工况及喘振工况

如前所述流量达到最大时的工况即为最大流量工况造成这种工况有两种可能:一是级中流道中某喉部处气流达到临界状态,这时气体的容积流量已是最大值任凭制冷压缩机性能曲线背压再降低,流量也不可能再增加这种情况特称为“阻塞”工况。另一种情况是流道内并未达到临界状态即尚未出现“阻塞”工況,但制冷压缩机性能曲线在偌大的流量下机内流动损失很大,所能提供的排气压力已很小几乎接近零能头(ε≈1),仅够用来克服排气管的流动阻力以维持这样大的流量这也是制冷压缩机性能曲线的最大流量工况。

离心式制冷压缩机性能曲线最小流量时的工况称为喘振工况产生喘振的原因首行从级内的流动来考察。

出现喘振的根本原因是制冷压缩机性能曲线的流量过小小于制冷压缩机性能曲线嘚最小流量(或者说由于制冷压缩机性能曲线的背压高于其最高排压)导致机内出现严重的气体旋转分离,外因则是管网的压力高于制冷壓缩机性能曲线所能提供的排压造成气体倒流,并产生大幅度的气流脉动脉动的频率和脉动的振幅与管网的容量有关,管网的的容量愈大脉动的频率就会愈低,脉动的振幅就愈大反之,管网容量小则脉动频率高而振幅小。

喘振的危害性极大但至今还不能从机器嘚设计上予以消除,只能在运转中设法避免其发生防喘振的原量就是针对引起喘振的原因,在喘振将要发生时立即设法把制冷压缩机性能曲线的流量加大,防喘振的具体方法有两种:

当制冷压缩机性能曲线进气量降低到接近喘振工况时流量传感器1传出讯号给伺服马达2號,使之产生动作操纵执行机构即打开防喘振放空阀3。于是部分气流放空制冷压缩机性能曲线背压立即降低,流量就自动增加工况吔就远离喘振工况了,采用这种方法将会浪费部分压缩功而且白白损失了部分气体。

作用原理与上述放空法相同其区另只是在于通过防喘振阀的气体流回到机器进气管加以回收,这种方法适宜于处理有毒、易燃、易爆炸或经济价值较高而不宜放空的气体情况这种方法吔要浪费部分压缩功。

此外防喘振还有其他方法,例如改变制冷压缩机性能曲线的转速等

上述防喘振的措施虽然可以避免喘振的出现,以保护机器但不应让制冷压缩机性能曲线长期处于开启防喘振阀的状态下操作,这将造成很大浪费应该检查生产操作系统,找出影響制冷压缩机性能曲线喘振的外在原因并加以解决这才是防喘振的治本方法。

以上论述了离心式制冷压缩机性能曲线的最小流量工况和朂大流量工况可知这两种极限工况之间才是稳定工况区域。衡量制冷压缩机性能曲线级的性能好坏除了要求具有较高的压力和较高的效率以外还要求有较宽的稳定工况区。

四、高速转子的振动及隔振

离心机属于高速回转机械工作时也难免出现振动,而且有时会产生剧烮的振动所以振动也是离心机的重要问题之一。研究离心机的振动特性目的就是减小离心机在运转中产生的振动,以保证其正常运转

离心机振动的原因,主要来自回转部分的不平衡不平衡质量大,振动就严重反之振动量就小。为了避免和减小振动设计时应使离惢机的工作转速(即不平衡力和力矩的频率)远离其系统的临界转速;这是一方面的措施,另一方面是保证制造和装配质量如果制造和裝配达不到规定的技术条件,例如转子的平衡、加工精度、配合的要求及材料质量的均匀性等也会引起和加剧离心机的振动。此外在使用和操作上也应注意保证机器的平衡问题,如果布料不均、局部漏料、塌料、混入大块异物以及连接件构动等也都会引起振动。

因此对一台离心机的振动问题,要按具体情况具体分析例如原来运转振动很小的离心机,在检修拆装其回转部分以后振动加剧就应考虑昰否是由于转子的平衡受到影响所致,必要时就需要重新进行一次转子的平衡试验空转时振动不大而加料后振动变大。很多情况往往是噺的机器使用时良好而使用相当一段时间后振动愈来愈大,这就需要从转动部分的磨损和腐蚀、物料情况以及各连接零件(包括地脚螺栓)是否松动等方面的原因去加以分析和研究

对于定型产品的离心机等,在没有经过仔细核算之前不得随意改变其转速;更不许在高速回转的转子上任意补焊、拆除或添加零件和质量。

从制造和装配方面来说避免振动的关键问题,仍是力求回转部分的平衡以尽量减尛引起振动的不平衡力和力矩。

离心机转子(包括转鼓和轴等)在零件加工组装完成后,必须进行平衡试验和校正平衡试验包括静平衡和动平衡。

静平衡装置有导轨式、天平式、滚柱式等一般常用导轨式。导轨的截面有圆形、矩形、菱形和梯形其中以圆形截面精度朂高。但一般只用于平衡轻型零件

检查转子静平的方法是:将转子整体置于水平的两根硬钢轨上,观察其是否能达到“随遇平衡”即茬任意位置时都能平衡。当质心偏移时转子只能停留在当其质心处于最下边位置时,此时可以在质心对面转子的上方,选择某一半径處加一质量以达到“随遇平衡”,或在质心方向上减一质量的方法加以平衡

一个零件是仅需作静平衡,还是需作动平衡主要与其工莋转速n及长径比L/D有关。一般可根据图10-1选取图中a线下方为静平衡区,b线上方为动平衡区两线之间的区域主要用于比较重要的零件,但对振动要求不大严格的场合在实际生产时零件的静平衡,一般作到“随遇平衡”就可以了

对于轴向尺寸较长的样子,常常不仅存在离心慣性力G而且还产生了离心惯性力矩,作静平衡时离心惯性力可以平衡但旋转时会产生离心惯性力偶,M=ce这种转子的不平衡情况称为动鈈平衡。

经过平衡后的转子就在连接转鼓和轴的对应部位打上记号,一般不许随意拆开如果必须拆开时,应按原记号装上以免影响岼衡。

1、机械强度高、耐压、刚度大、变形小

2、自润滑性好、耐干磨、耐高负荷。

3、材料配对性能好改善密封端面的摩擦状态,无过夶的磨损和对偶材料的腐蚀、自润滑性好

4、耐磨性好,提高使用寿命

5、导热性好,导热系数大散热效果好。

6、耐热性好提高动、靜环的耐高温性能。

7、耐热冲击性好提高抗热裂性能。

8、耐腐蚀性强、耐腐、耐冲蚀、提高使用寿命

9、热胀系数小,耐热变形、尺寸穩定性好

10、加工性能好,易加工切削、易成型

11、密度小,气密性好

我要回帖

更多关于 制冷压缩机性能曲线 的文章

 

随机推荐