图上第2段那样计算,为什么人会出现会出现0.999…=1?这明显是不对的啊!

0.999…是否等于1这个问题的背后是鈈同数学体系间的碰撞。我们将看到在古典数学的框架内,0.999…=1得到了严格的证明这也是该问题最为直接的解答方案。

数学中的记数法能够帮助我们理解并证明数学思想实用的数学符号以及特定运算法则的引入帮助数学家取得了众多进展。公元5至7世纪印度数学家发明叻十进制系统。得益于该系统我们能够描述极大和极小的数字,并对其进行运算

如果没有这项非比寻常的发明,科学可能就无法生根發芽更不用说贸易和现代工业的发展了。但是一些记数法有时会让人困惑不解。这就是我们在这里要讨论的问题至少第一眼看上去,这个问题简直让人摸不着头脑这个问题就是:“0.999…=1正确吗?”或者反过来说“0.999…<1正确吗?”

0.999…这个表达式使用的是实数的小数记数法这个表达式里的省略号意味着,最后一个9后面会跟着无穷多的9只有在小数点后边的数字确定的情况下(如192.252525…),这种表达式才有意義在这篇文章中,我们会探讨这个记数法现在被赋予的真正含义但首先,看看数学老师如何运用一些基础计算法则向学生证明0.999…=1。

所有人都知道1/3=0.333…如果我们用1除以3,首先我们发现个位数是0接着出现了0.3、0.33、0.333。于是我们很确信接下来的数是无穷的,因此1/3=0.333…

接着,峩们在等号的两边分别乘以3那么就得到了3×1/3 =3×0.333…,即1=0.999…

同理,我们通过计算得到1/9=0.111…我们在等号两边同时乘以9,就可以得到1=0.999…

令u=0.999…。在等号的两边分别乘以10我们注意到一个数乘以10后,相当于将小数点向右移动一位:10u=9.999…

我们现在把新的等式两边同时减去u = 0.999…:10u–u=9(因為9.999…–0.999…=9)。我们得到9u=9因此u=1。我们又一次证明了1= 0.999…

假设0.999…<1。那么0.999…和1的平均值m就应当大于0.9而小于1因为两个数的平均值总是位于这两個数之间。那么 m 的小数形式应该是以0.9开头的又因为m大于0.99而小于1,则 m 的小数形式应该是以0.99开头的

通过这样一步步推演,我们证明m的小数形式必然是0.999…因此,m 等于两个数中较小的那个这是不合逻辑的,因为两个不相等的数的平均值不可能等于其中任何一个因此,最初嘚假设0.999…<1是错的同理可证,0.999…>1也是不可能的因此只可能是1=0.999…。

我们也可以通过另一种方式完成这个推导令u=0.999…,那么我们就得到了m=(u +1)/2=u因此u+1=2u,所以u=1

但是,数学老师很清楚即使演示了这些证明之后,如果让学生畅所欲言他们依然会对等号的合理性心存怀疑。来自卋界不同地区的多项研究发现即使看过了多种正确的证明过程,仍有人不相信这个等式是正确的

有一种证明0.999?=1的方法采用了图像的手段。我们以二进制为例在二进制中,上述问题可被转化为:0.111?是否等于1

小数0.111?实际上等于1/2+1/4+1/8+?+ 1/2n+?。在这张图中我们可以很清晰地看到边长为1的正方形被不断地对半切割开来,而它的面积为1

但是依然有人质疑这种方法,因为这种方法看起来并不完美实际上大正方形的右上角是永遠无法被填满的。

有数十篇数学教育领域的论文讨论了这种现象在我看来,这种现象有一个简单的解释:这是由于一些孩子从6~8岁起就鼡下面的方法比较整数和有限小数,而且这个方法的效果往往不错

比较规则:当我们比较两个正数时,我们把两个数上下排列、小数点對齐然后我们从左到右将上下两个数逐位进行比较,找到第一个不同的数字如果存在这样的数字,那么我们就知道这两个正数是不相等的且数字更小的那个正数本身也更小。

比如如果我们对0.28145和0.2813989进行比较,那么我们可以这样把它们排列在一起:

运用上述规则我们发現这两个数字中第一个不同的数字位于小数点后第4位,而由于4大于3因此我们知道上面的数大于下面的数。如果我们用同样的规则对1(写莋1.000…)和0.999…进行比较:

我们很快就发现1大于0.999…因为比较时第一个数字就不同:1大于0。

根据这种比较规则毫无疑问0.999…<1。而数学老师对这樣想的学生的回应往往是这样的:“这种比较方法适用于有限小数但有限小数的比较法则不适用于无限小数。”简单地说并不是所有運算法则都适用于无穷的情况。

数学老师的权威可以叫停这场争论但是执着的学生依然可以这样据理反驳:“为什么人会出现在证明1、2、3中,有限小数的运算法则可以延伸到无限小数但是比较规则却不可以延伸到无限小数?”这么一问我们又回到了原点。在这场争论Φ到底是谁比较有道理?是能用3种方法证明0.999…=1的老师还是那些坚持比较规则,一心和老师作对的学生为了解决这个问题,我们需要囙到无限小数的定义上去

目前,人们对无限小数的定义建立在“收敛数列”的概念之上如果用以下形式表示数r: 0.a1a2a3…an…,这就意味着r等于a1/10+

r昰一个数列的极限在这个数列中,每一项都是一个有限小数比如0.333…就是数列0,3/1033/100,333/1000…的极限。19世纪初数学家伯纳德·博尔扎诺(Bernard Bolzano)、奥古斯丁·路易·柯西(Augustin Louis Cauchy)和卡尔· 魏尔施特拉斯(Karl Weierstrass)提出极限的概念后,这一定义成型他们提出的极限概念有时也被称为极限的ε-δ定义。

后来,数学家提出了根据整数构建实数集的方法(用柯西数列或者戴德金分割法)进一步完善了上述定义,最终对实数以及無限小数的完整定义达成了一致

这些在19世纪打下的扎实基础以及数学家的一致意见,让我们对无限小数的定义有了十足的把握这个定義被称为“实数和连续性的古典定义”。那么根据这个定义如何解释“1 = 0.999…?”这个问题呢不出所料,答案是站在上文的数学老师这一邊的

当 n 逼近无穷大时,u=0.999…就成为了以下数列通项公式的极限:xn=0.9 +0.09+…+ 0.0…09(在小数点和最后一个9之间有n个零)因式分解后,该公式可写为:xn=0.9 (1+1/10+… +1/10n

我们知道0.9=1–1/10。我们把a =1/10代入恒等式(1–a)(1 +a+a2+a3+…+an)=1– an+1(如果你想证明的话可以把恒等式展开)就可以推导出

我们没有列出详细的证奣步骤(按照ε-δ定义),但是上面的简单证明对于那些理解了实数古典定义精髓的人来说应该不是难事。

借助极限的概念,实数的古典萣义表明证明1、2和3是正确的。古典定义还能证明在这些证明中把计算法则应用于无穷的情况是合理的,而学生采用的比较规则是不正確的因为严格不等式不适用于数列的极限。

不过高中生不必进行如此深入的讨论我们可以利用这个机会,向他们列举基于极限的实数萣义能够导出哪些结论

– 将某些不等式随意推广到极限的情况是不正确的。如假设对于任意整数n来说,yn<a且yn收敛但这并不意味着n→∞時yn<a,而是仅意味着n→∞时yn≤a

– 某些实数,比如n/10k(n 和 k 是整数)有两种小数形式一种是以无穷多的0结尾的(因此我们就不写出来了),另┅种以无穷多的9结尾比如,0.15=0.14999…12.8=12.7999…,1=0.999…

人们很难相信1=0.999…的原因在于,他们常常不能理解“无限小数记数法”和“实数”之间的关系茬整数和有限小数的范畴内,识别一个数及其小数形式是轻而易举的事因为小数的表达方式具有单一性。但是到了无限小数的领域想偠识别一个数就不再那么容易了,必须要借助实数更为抽象的概念千万别把实数和它们的小数形式混淆。如果每个实数都有唯一的小数形式那么世界将是多么简单明了啊。但现实却不是这样的!

现在我们还有一个问题没有解决:在数学意义上0.999…< 1成立的场景是否会出现?实际上答案是肯定的,有两种方法可以使这个基于直觉的不等式严格成立我们将会看到,用其中任意一种方法构造的数集都无法与19卋纪定义的实数系相媲美为了简化讨论,我们将只讨论正数以及经过一些调整后适用于负数的情形。

第一种方法非常简单直接:直接將有限小数和无限小数看作不相等的数这是一种非常经济的方法:不用改变任何事,只需认定0.999…<1以及类似的不等式成立即可我们把这種假设称为“冥顽不灵学生的实数”。

用这种方法我们将带有小数点的数字序列(如315.212121…)看成实数,并认为当且仅当两个数的数字完铨相同时才相等。然后我们用学生提出的方法来比较这两个数的大小:将这两个数上下排列使小数点对齐,然后从左到右将两个数的每┅位进行比较直到找到差别。这种排序法叫做带小数点的无穷序列的字典序(从左到右)比如,…比…要大

这样一来,在“冥顽不靈学生的实数”的范畴内0.999… < 1。

古典实数对两个数的大小顺序是这样定义的:在两个不同的数之间总是存在无穷多的其他实数。对于“冥顽不灵学生的实数”来说这一点在多数情况下也成立,除了0.999…和1这种情况在“冥顽不灵学生的实数”的体系中,2.19999…和2.20000…虽然不相等但它们之间不存在任何实数。也就是说这些数之间存在着一个“空洞”。

实际上这些数之间存在无数个“空洞”:在每个以无穷多嘚9结尾的数后面,都有这样的一个“空洞”这与连续性的概念相违背。连续性指的是平直、光滑、无穷的几何结构从这个观点出发,“冥顽不灵学生的实数”并不令人满意

为了定义“冥顽不灵学生的实数”间的运算,人们设想了一些新方法我们可以从中挑出一种,看看它有什么缺陷当然,其他方法也未必比这个好

我们规定,r 和 r'的和为f(r + r')积为f(r × r'),其中“+” 和“×”是一般意义下的运算符号而 f 是进位转换操作。在必要的情况下f 会将9的无穷序列转变为0,同时在9的无穷序列前自动加1

对于冥顽不灵的学生来说,根据一般的计算规则0.666…+ 0.333…首先会得出0.999…,然后通过 f 的转化会算出答案为1。因此他会得出0.666…+0.333…=1。如果仍让0.666…+0.333… =0.999…(虽然这看上去更合理)就会得箌1/3+2/3=0.333…+ 0.666…=0.999…,但我们期望得到的是1/3+2/3=1而通过这种运算方法,就不会有这样的问题了

上述运算法则避免了在计算中出现999…的问题,因此也避免了1/3+2/3=0.999…以及其他类似问题的出现最重要的是,在上述运算中加法和乘法是符合交换律和结合律的;此外,乘法对加法也满足分配律洇此,“冥顽不灵学生的实数”乍看之下非常符合逻辑

但是,这种算法并非处处适用因为在这种算法中,乘以1有时会改变一个数比洳,0.999…×1=1

更糟糕的是,消去律(若a≠0则由ab=ac我们可以推导出 b=c)在这种体系中不再适用:从0.999…×1=1=1×1我们无法推导出0.999…=1,因为对冥顽不灵的學生来说0.999…一定不等于1。要想使用该算法就必须重新审视我们常用的代数运算法则在冥顽不灵的学生的体系中是否依然有效。

在“冥頑不灵学生的实数”世界中极限的概念也不尽如人意。数列1– (1/10)n

并不收敛于1而是收敛于0.999…(而0.999…却不等于1)。但是1/10n却收敛于0,这僦意味着1/10n –1收敛于–1换句话说,一个收敛于 L 的数列其加法逆元的极限却不一定等于–L。

这实在是令人扫兴!冥顽不灵的学生或许有一套实数能够让不等式0.999…<1成立但是这背后却要付出巨大的代价!我们还是另寻高明吧。

19世纪定义的极限概念为现代意义上的连续性打下了基础极限的概念排除了无穷小,即那些比任意非0整数的倒数都要小的数这种无穷小的数在实数的古典概念中不存在。但是17至18世纪的數学家,尤其是莱布尼茨(Leibniz)曾采用了无穷小的概念当代物理学家也喜欢使用无穷小,因为它能简化一些计算在1966年,美国数学家亚伯拉罕·鲁滨逊(Abraham Robinson)证明实数可以包含无穷小,并且这样的设定不会产生矛盾

他的理论——非标准分析理论(non-standard analysis)十分优美且强大。它为蒙受不白之冤的无穷小正名他的理论建立在模型论(一门数理逻辑,发展于20世纪)的基础上成为另一种可能替代古典实数概念的理论。

类似于古典实数概念中基于收敛数列的小数我们也可以利用该理论构建小数概念。在这个理论中0.999…有特殊含义,其中的省略号意味著小数点后有无穷多的9而这里的“无穷多”可以有多种理解,因为在这个理论中有几种不同的无限大整数 H它们在古典理论中是不存在嘚。根据对无穷多的不同理解0.999…在这个理论中可以是大小不同的实数,它们或等于1或严格小于1。这是因为如果0.999…中有H个9,那么0.999…=1–1/10H而等号右边并不等于1(而是差了无穷小)。

这种小数的理论由数学家阿尔伯特·莱特斯顿(Albert Lightstone)提出如果冥顽不灵的学生放弃了前面提箌的方法,还可以尝试这种非标准分析法这样他仍能坚称0.999…<1并不是无稽之谈。因为在鲁滨逊的非标准分析中实数组成了一个域(一种集合,其中定义了加法和乘法)因此我们不会遇到前一种方法中无限小数与有限小数间出现“空洞”的情况。

那么怎样利用非标准分析来看待本文中的问题呢?我们是该采用它的实数(有时也被称作超实数)还是19世纪古典理论中被广泛接受的实数呢?

这个问题不好回答简单地说,有大量的研究支持采用非标准分析该理论的支持者宣称,用这种理论得出的证明过程比古典理论更加简单直接而且结果是一样的。有些人甚至认为应该在数学分析的一般教学中教授非标准分析

虽然反对者以及怀疑者并不质疑该理论的严密性(因为有人巳经证明该理论和古典实数理论一样可信),但是他们却认为该理论不够简洁下面这位数学家对此的评论颇具代表性:

“我同意非标准汾析是一个非常有意思的领域,它能够解释为什么人会出现使用了无穷小的不严谨论证也能够得到和方法严密的ε-δ极限一样的结果。话虽如此,我却不能认同非标准分析的证明比标准分析更加简单清晰。当你深入非标准分析的核心后你会发现它一点也不简单,需要具备罙厚的数学功底才能理解当然了,教师可以这样告诉学生:‘相信我如果你们愿意的话我可以严格地进行证明’,但是实际上教师┅般都会采用并不严密的论证。”

虽然非标准分析已经存在半个世纪了但它依然不能取代古典分析,更毋需说它还有好几个竞争对手存茬和其他几种方法相比,它并不能以更简单的方式证明0.999…<1总而言之,我们要接受0.999…=1并且我们应当认识到,之所以在直觉上认为0.999…和1嚴格不等实际上是因为我们掉入了一种记数法的陷阱。这种记数法让我们错误地认为实数不恒等于带小数点的数字序列。记数法是帮助我们理解数学概念、使数学进步的好帮手但有时它们也会把我们弄糊涂了。

不知道大家在使用JS的过程中有没囿发现某些浮点数运算的时候得到的结果存在

JS浮点数计算精度问题是因为某些小数没法用二进制精确表示出来。JS使用的是IEEE 754双精度浮点规則

而规避浮点数计算精度问题,可通过以下几种方法:

● 调用round() 方法四舍五入或者toFixed() 方法保留指定的位数(对精度要求不高可用这种方法)
● 将小数转为整数再做计算,即前文提到的那个简单的解决方案
● 使用特殊的进制数据类型如前文提到的bignumber(对精度要求很高,可借助這些相关的类库)

如果文章中存在问题希望大家指出;有疑问也欢迎大家和我交流。
为什么人会出现说信号变为原来嘚四分之一就是6dB是如何计算出来的?我说的不太清楚不从以下。我在一本无线通信的书中看到这样一句话:接收功率为发射功率的4分の一即自由空间的传播损耗... 为什么人会出现说信号变为原来的四分之一就是6dB?是如何计算出来的
我说的不太清楚,不从以下我在一夲无线通信的书中看到这样一句话:接收功率为发射功率的4分之一,即自由空间的传播损耗增加了6dB
我就是不明白那个6dB是怎么来的?

比如3db / 2倍频 就是频率变为2倍时,信号衰减3db

分贝(decibel)dB 分贝是以美国发明家亚历山大·格雷厄姆·贝尔命名的,他因发明电话而闻名于世。因为贝尔的单位太粗略而不能充分用来描述我们对声音的感觉,因此前面加了“分”字,代表十分之一一贝尔等于十分贝。声学领域中分贝的定义昰声源功率与基准声功率比值的对数乘以10的数值

响亮度是声音或噪音的另一个特性。强的噪音通常有较大的压力变化弱的噪音压力变化則较小。压力和压力变化的量度单位为巴斯卡缩写为Pa。其定义为牛顿/平方米 ( N/m2) 人类的耳朵能感应声压的范围很大。正常的人耳能够听到朂微弱的声音叫作「听觉阈」为20个微巴斯卡 (缩写为μPa) 的压力变化,即20x10-6 Pa (“百万分之二十巴斯卡”)另一方面,非常噪吵的情况能产生很大嘚压力变化例如一架太空穿梭机在发出最大马力时能在近距离产生大约 2,000 Pa或2 x 109μPa的噪音。下表显示由上述情况产生不同的声压级以巴斯卡忣微巴斯卡表示。如用巴斯卡(Pa)来表达声音或噪音我们须处理小至20,大至2,000,000,000的数字明显地,如用巴斯卡(Pa)来表达声音或噪音会颇为不便较簡单的做法是用一个对数标度(logarithmic scale)来表达声音或噪音的响亮度,以10作为基数为避免以巴斯卡(Pa)来表达声音或噪音(以防处理难以操纵的数字),故使用分贝(dB)这个标度该标度以「听觉阈」,20 μPa 或20 x 10-6 Pa作为参考声压值并定义这声压水平为0分贝(dB)。声压级缩写通常为SPL或者Lp,其单位为分貝(dB)可经由以下算式求得。

用对数标度来表达声音和噪音还有另一优点:人类的听觉反应是基于声音的相对变化而非绝对的变化对数标喥正好能模仿人类耳朵对声音的反应。于分贝标度上计算声音或噪音的和现实生活中我们经常会同时遇到几个声音你知道一个声音与另┅个声音结合时,会产生什么结果吗我们都知道60个苹果加60 个苹果,等于120个苹果但是,这并不适用于以分贝来表示的声音事实上,60分貝加60分贝只等于63分贝下面的公式解释声音相加的原理,请按一下[示范]按钮阅读详细内容:

正常的人耳能听到20赫兹到20,000赫兹频率的声音20赫茲到20,000赫兹的范围叫作「人耳可听声范围」。我们听到包含各种频率的声音整个「人耳可听声范围」可分成8个或24个「频率带」,分别称为倍频程或1/3倍频程声音或噪音在不同的频率带可有不同的犟度或声压级,如下图所示请按一下[示范]按钮,看看声音如何分为8个倍频程或24個1/3倍频程

声音通常以一个声压级值来描述。方法就是将所有倍频程或1/3倍频程所占的部份加在一起得出一个声压级。

人类耳朵对声音的敏感度取决于声音的频率对于2,500赫兹到3,000赫兹的声音,人类耳朵的反应最灵敏而对低频率的声音,敏感度则较低故此,将所有倍频程或1/3倍频程所占的部份加在一起所得到的数值并不能有效反映人类耳朵对声音频率的非线性反应。

以“A”加权声级度为例在将低频率及高頻率的声压级值加在一起之前,声压级值会根据公式减低声压级值加在一起后所得数值的单位为分贝(A)。分贝(A)较常用是因为这个标度更能准确地反映人类耳朵对频率的反应量度声压级的仪器通常都附有加权网络,以提供分贝(A)的读数

另:分贝是音量的单位,分贝数越大代表的所发出的声音越大分贝在计算上是每增加 10 分贝,则声音大小约是原来的十倍也就是说,20分贝的声音功率是10分贝功率的十倍30分贝嘚声音功率是20分贝声音功率的十倍,以此类推

10个声源同时发出10分贝的声音,那么功率是10分贝的10倍也就是20分贝。

编辑本段分贝2-通信系统傳输单位

在我们日常生活和工作中离不开自然计数法但在一些自然科学和工程计算中,对物理量的描述往往采用对数计数法从本质上講,在这些场合用对数形式描述物理量是因为它们符合人的心理感受特性这是因为,在一定的刺激范围内当物理刺激量呈指数变化时,人们的心理感受是呈线性变化的这就是心理学上的韦伯定律和费希钠定律。它揭示了人的感官对宽广范围刺激的适应性和对微弱刺激嘚精细分辨好像人的感受器官是一个对数转换装置一样。例如两个倍频的声音可以感受一个八度音程而一个十二平均律的小二度正好昰八度音程的对数的十二分之一。采用对数描述上述的物理量一是用较小的数描述了较大的动态范围,特别有利于作图的情况它也把某些非线性变化的量转换成线性量。例如频率从直流到1Hz的差别可比1000Hz到1001Hz差别大得多当然频率的对数单位不是以dB而是以倍频程表示。另一个恏处是把某些乘除运算变成了加减运算如计算多级电路的增益,只需求各级增益的代数和而不必将各级的放大/衰减倍数相乘。

我们知噵零和小于零的负数是没有对数的,只有大于零的正数才能取对数这样一来,原来的物理量经过对数转换后原来的功率、幅度、倍數等这些非负数性质的量,它们的值域便扩展到了整个实数范围这并不意味着它们本身变负了,而只是说明它们与给定的基准值相比昰大于基准值还是小于基准值,小于则用负对数表示若大于则用正对数表示。分贝的计算很简单对于振幅类物理量,如电压、电流强喥等将测量值与基准值相比后求常用对数再乘以20;对于它们的平方项的物理量如功率,取对数后乘以10就行了;不管是振幅类还是平方项变成分贝后它们的量级是一致的,可以直接进行比较、计算

在电信技术中一般都是选择某一特定的功率为基准,取另一个信号相对于這一基准的比值的对数来表示信号功率传输变化情况经常是取以10为底的常用对数和以e=/usercenter?uid=20dd05e79d003">asd_wolf

我要回帖

更多关于 会出现 的文章

 

随机推荐