硅材料硅半导体和锗半导体的区别材料从三个特性进行pk结果是

     电阻(Resistance)是导体本身的一种物理学特性,用来表示电流阻碍作用的大小,电阻阻值越大,表示导体对电流的阻碍作用越大。电阻元件的电阻值大小一般与其温度、材质、形状等有关,温度系数即温度每升高1℃电阻值发生变化的百分数,是衡量电阻值随温度变化的物理量。

    导体没有外电场时,自由电子朝各个方向运动的几率相同,故不形成电流。加上外电场后,电子就在原来无规则的热运动上又叠加上了一个定向运动,由于电子不断地和晶格碰撞,故电子的定向加速运动并不能一直持续下去,仅能维持在相继两次碰撞的时间里。

    设电子相邻两次碰撞之间的平均自由时间为τ,在外电场的作用下,对于自由电子来说,有:

    因碰撞是随机的,从统计平均角度来看,碰撞后的定向速度为零,电子所能获得的定向运动速度,就是从相邻两次碰撞之间从零开始获得的加速

    由定积分中值定理,可以求出自由电子在相邻两次碰撞间的平均定向运动速度(电子的漂移速度)

    对纯半导体材料,电阻率主要由本证载流子浓度ni决定。ni随温度上升而急剧增加,室温附近,温度每增加8℃,硅的ni就增加一倍,因为迁移率值稍有下降,所以电阻率将相应地降低一半左右;对锗来说,温度每增加12℃,ni增加一倍,电阻率降低一半。本征半导体电阻率随温度增加而单调地下降,这是半导体区别于金属的一个重要特征。

    对杂质半导体,有杂质电离和本征激发两个因素存在,又有电离杂质散射和晶格散射两种散射机构的存在,因而电阻率随温度的变化关系要复杂些,下图示意地表示一定杂质浓度的硅样品的电阻率和温度的关系,曲线大致分为三段。

    AB段:温度很低,本征激发可忽略,载流子主要由杂质电离提供,它随温度升高而增加;散射主要由电离杂质决定,迁移率也随温度升高而增大,所以,电阻率随温度升高而下降。

    BC段:温度继续升高(包括室温),杂质已全部电离,本征激发还不十分显著,载流子基本上不随温度变化,晶格振动散射上升为主要矛盾,迁移率随温度升高而降低,所以,电阻率随温度升高而增大。

    C段:温度继续升高,本征激发很快增加,大量本征载流子的产生远远超过迁移率减小对电阻率的影响,这时,本征激发成为矛盾的主要方面,杂质半导体的电阻率将随温度升高而急剧地下降,表现出同本征半导体相似的特征。很明显,杂质浓度越高,进入本征导电占优势的温度也越高;材料的禁带宽度越大同一温度下的本征载流子浓度就越低,进入本征导电的温度就越高。温度高到本征导电起主要作用时,一般器件就不能正常工作它就是器件的最高工作温度一般地说,锗器件最高工作温度为100℃,硅为250℃,而砷化镓可达450℃。

    温度是强烈影响许多材料额物理性能的外部因素,金属的电阻率随温度升高而增大。尽管温度对有效电子数和电子平均速度几乎没有影响,然而温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加。周期势场的涨落也加大。这些因素都使电子运动的自由程减小,散射几率增加而导致电阻率增大。

    严格地说,金属电阻率在不同温度范围内变化规律是不同的,其特征见下图,这与电子的散射有关。

    在完整的理想晶体中电子的散射取决于温度所造成的点阵畸变,金属的电阻取决于离子的热振动。也就是说,除了最低的温度以外,在所有温度下大多数金属的电阻都决定于“电子-声子”散射。必须指出,点阵的热振动在不同温区存在差异。根据德拜理论,原子热振动的特征在两个温度区域存在本质的差别,划分这两个区域的温度ΘD称为德拜温度或特征温度。

    通常对金属导电性的研究均在德拜温度以上,在高于室温以上温度金属的电阻与温度关系为

式中,T为温度(℃);表示金属在0℃和T温度下的电阻率;α为电阻温度系数,在0~T℃温度区间的平均电阻温度系数

     对大多数金属,电阻温度系数α为数量级。而过渡族金属,特别是铁磁性金属的α较大,约为数量级

    大多数金属在熔化成液态时,其电阻率会突然增大约1.5~2倍,这是由于原子排列的长程有序被破坏,从而加强了对电子的散射,引起电阻增加。但也有些金属如锑、铋、镓等,在熔化时电阻率反而下降,因为锑在固态时为层状结构,具有小的配位数,主要为共价键型晶体结构,在熔化时共价键被破坏,转为以金属键结合为主,谷5使电阻率下降。铋和镓在熔化时电阻率的下降也是由于近程原子排列的变化所引起的。

     过渡族金属的电阻与温度的关系经常出现反常,特别是具有铁磁性的金属在发生磁性转变时,电阻率出现反常。对于居里点(磁性转变温度)以下的铁磁性金属,电阻和温度的线性关系已不适用。研究表明,在接近居里点时,铁磁金属或合金的电阻率反常降低量Δρ与其自发磁化强度平方成正比,即

式中,ρ为居里点下的电阻率。

      铁磁性金属电阻-温度反常是由于铁磁性金属内参与自发磁化的d及s壳层电子云相互作用引起的。

    吉时利仪器公司2636B源表是一种中功率源-测量单元(SMUs),通过将源和测量功能结合在一台仪器上,极大地简化了测试过程并减小了在连接电路过程中产生的线路干扰问题。2600B系列数字源表仪器是一种可扩展、高通量、高成本效益的精密直流、脉冲和低频交流源测量测试解决方案。源表为本实验提供测试电源以及测量数据。

●Solar太阳能领域检测分析

    此外,可以通过外部调控,实现测试台的温度的变化。在此基础上,加入探针座以及微米级直径的探针就可以实现将待测的元件连入电路中进行测试。

[1]苏万春.电阻率的微观本质[J].广州航海高等专科学校学报,-5.

[2]陈騑騢.材料物理性能[M].北京机械工业出版社,2006,1

[3]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京电子工业出版社,2011,3

据了解,我国计划把大力支持发展第三代半导体产业,写入“十四五”规划,计划在年期间,在教育、科研、开发、融资、应用等等各个方面,大力支持发展第三代半导体产业,以期实现产业独立自主。

第三代半导体是以碳化硅SiC、氮化镓GaN为主的宽禁带半导体材料,具有高击穿电场、高饱和电子速度、高热导率、高电子密度、高迁移率、可承受大功率等特点。

一、二、三代半导体什么区别?

第一代半导体材料,发明并实用于20世纪50年代,以硅(Si)、锗(Ge)为代表,特别是硅,构成了一切逻辑器件的基础。 我们的CPU、GPU的算力,都离不开硅的功劳。

第二代半导体材料,发明并实用于20世纪80年代,主要是指化合物半导体材料,以砷化镓(GaAs)、磷化铟(InP)为代表。 其中砷化镓在射频功放器件中扮演重要角色,磷化铟在光通信器件中应用广泛……

而第三代半导体,发明并实用于本世纪初年,涌现出了碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石(C)、氮化铝(AlN)等具有宽禁带(Eg>2.3eV)特性的新兴半导体材料,因此也被成为宽禁带半导体材料。

第一代半导体材料,属于间接带隙,窄带隙; 第二代半导体材料,直接带隙,窄带隙; 第三代半导体材料,宽禁带,全组分直接带隙。

和传统半导体材料相比,更宽的禁带宽度允许材料在更高的温度、更强的电压与更快的开关 频率下运行。

第一代半导体材料主要用于分立器件和芯片制造;

第二代半导体材料主要用于制作高速、高频、大功率以及发光电子器件,也是制作高性能微波、毫米波器件的优良材料,广泛应用在微波通信、光通信、卫星通信、光电器件、激光 器和卫星导航等领域。

第 三代半导体材料广泛用于制作高温、高频、大功率和抗辐射电子器件,应用于半导体照明、5G通信、卫星通信、光通信、电力电子、航空航天等领域。 第三代半导体材料已被认为是当今电子产业发展的新动力。

以第三代半导体的典型代表碳化硅(SiC)为例,碳化硅具有高临界磁场、高电子饱和速度与极高热导率等特点,使得其器件适用于高频高温的应用场景,相较于硅器件,碳化硅器件可以显著降低开关损耗。 因此,碳化硅可以制造高耐压、大功率的电力电子器件如MOSFET、IGBT、SBD等,用于智能电网、新能源汽车等行业。 与硅元器件相比,氮化镓具有高临界磁场、高电子饱和速度与极高的电子迁移率的特点,是超高频器件的极佳选择,适用于5G通信、微波射频等领域的应用。

第三代半导体材料具有抗高温、高功率、高压、高频以及高辐射等特性,相比第一代硅基半导体可以降低50%以上的能量损失,同时使装备体积减小75%以上。

第三代半导体属于后摩尔定律概念,制程和设备要求相对不高,难点在于第三代半导体材料的制备,同时在设计上要有优势。

由于制造设备、制造工艺以及成本的劣势,多年来第三代半导体材料只是在小范围内应用,无法挑战硅基半导体的统治地位。

目前碳化硅衬底技术相对简单,国内已实现4英寸量产,6英寸的研发也已经完成。 氮化镓(GaN)制备技术仍有待提升,国内企业目前可以小批量生产2英寸衬底,具备了4英寸衬底生产能力,并开发出6英寸样品。

在5G和新能源汽车等新市场需求的驱动下,第三代半导体材料有望迎来加速发展。硅基半导体的性能已无法完全满足5G和新能源汽车的需求,碳化硅和氮化镓等第三代半导体的优势被放大。

另外,制备技术的进步使得碳化硅和氮化镓器件成本不断下降,碳化硅和氮化镓的性价比优势将充分显现。 初步判断,第三代半导体未来的核心增长点将集中在碳化硅和氮化镓各自占优势的领域。

常被用于功率器件,适用于600V下的高压场景,广泛应用于新能源汽车、充电桩、轨道交通、光伏、风电等电力电子领域。新能源汽车以及轨道交通两个领域复合增速较快,有望成为碳化硅市场快速增长的主要驱动力。

计到2023年,碳化硅功率器件的市场规模将超过15亿美元,年复合增长率为 31%。

在新能源汽车领域,碳化硅器件主要可以应用于功率控制单元、逆变器、车载充电器等方面。碳化硅功率器件轻量化、高效率、耐高温的特性有助于有效降低新能源汽车的成本。

2018年特斯拉Model 3采用了意法半导体生产的碳化硅逆变器,是第一家在主逆变器中集成全碳化硅功率模块的车企。

以Model 3搭载的碳化硅功率器件为例,其轻量化的特性节省了电动汽车内部空间,高效率的特性有效降低了电动汽车电池成本,耐高温的特性降低了对冷却系统的要求,节约了冷却成本。

此外,近期新上市的比亚迪汉EV也搭载了比亚迪自主研发并制造的高性能SiC-MOSFET 控制模块。

在轨道交通领域,碳化硅器件主要应用于轨交牵引变流器,能大幅提升牵引变流装置的效率,符合轨道交通绿色化、小型化、轻量化的发展趋势。

近日完成调试的苏州3号线0312号列车是国内首个基于碳化硅变流技术的牵引系统项目。 采用完全的碳化硅半导体技术替代传统IGBT技术,在提高系统效率的同时降低了噪声,提升了乘客的舒适度。

侧重高频性能,广泛应用于基站、雷达、工业、消费电子领域:

氮化镓射频器件更能有效满足5G高功率、高通信频段的要求。5G基站以及快充两个领域复合增速较快,有望成为氮化镓市场快速增长的主要驱动力。基于氮化镓工艺的基站占比将由50%增至58%,带来大量氮化镓的新增需求。

预计到2022年,氮化镓器件的市场规模将超过25亿美元,年复合增长率为17%。

氮化镓具备导通电阻小、损耗低以及能源转换效率高等优点,由氮化镓制成的充电器还可以做到较小的体积。安卓端率先将氮化镓技术导入到快充领域,随着氮化镓生产成本迅速下降,氮化镓快充有望成为消费电子领域下一个杀手级应用。预计全球氮化镓功率半导体市场规模从2018年的873万美元增长到2024年的3.5亿美元,复合增长率达到85%。

2019年9月,OPPO发布国内首款氮化镓充电器SuperVOOC 2.0,充电功率为65W; 2020年2月,小米推出65W 氮化镓充电器,体积比小米笔记本充电器缩小48%,并且售价创下业内新低。

随着氮化镓技术逐步提升,规模效应会带动成本越来越低,未来氮化镓充电器的渗透率会不断提升。

中国三代半导体材料中和全球的差距

一、中国以硅为代表的第一代半导体材料和国际一线水平差距最大

几乎所有的晶圆代工厂都会用到美国公司的设备,2019年全球前5名芯片设备生产商3家来自美国;而中国的北方华创、中微半导体、上海微电子等中国优秀的芯片公司只是在刻蚀设备、清洗设备、光刻机等部分细分领域实现突破,设备领域的国产化率还不到20%。

美国已连续多年位列第一,我国的高端光刻胶几乎依赖进口,全球5大硅晶圆的供应商占据了高达92.8%的产能,美国、日本、韩国的公司具有垄断地位。

2019年台积电市场占有率高达52%,韩国三星占了18%左右,中国最优秀的芯片制造公司中芯国际只占5%,且在制程上前面两个相差30年的差距。

二、中国以砷化镓为代表的第二代半导体材料已经有突破的迹象

台湾系代工厂为主流,稳懋(台湾)一家独大,占据了砷化镓晶圆代工市场71%的市场份额,其次为宏捷(台湾)与环宇(GCS,美国),分别为9%和8%。

砷化镓元器件产品(PA为主),也是以欧美厂商为主,最大的是Skyworks(思佳讯),市场占有率为30.7%; 其次为Qorvo(科沃,RFMD和TriQuint合并而成),市场份额为28%; 第三名为Avago(安华高,博通收购)。 这三家都是美国企业。

可见,在砷化镓三大产业链环节(晶圆、晶圆制造代工、核心元器件),目前都以欧美、日本和台湾厂商为主导。 中国企业起步晚,在产业链中话语权不强。

不过从三个环节来看,已经有突破的迹象。如华为就是将手机射频关键部件PA通过自己研发然后转单给三安光电代工的。

三、中国在以氮化镓和碳化硅为代表第三代半导体材料方面有追赶和超车的机会

由于第三代半导体材料及应用产业发明并实用于本世纪初年,各国的研究和水平相差不远,国内产业界和专家认为第三代半导体材料成了我们摆脱集成电路(芯片)被动局面、实现芯片技术追赶和超车的良机。就像汽车产业,中国就是利用发展新能源汽车的模式来拉近和美、欧、日系等汽车强国的距离的,并且在某些领域实现了弯道超车、换道超车的局面。三代半材料性能优异、未来应用广泛,如果从这方面赶超是存在机会的。

作者简介:郝跃,中国科学院院士,国家自然科学基金委员会信息科学部主任,西安电子科技大学教授,研究方向为宽禁带半导体器件与材料、微纳半导体新器件与新材料。

注:本文将在近期《科技导报》发表,敬请关注。
本文来源:微信公众号 科技导报

微电子技术显著推动了信息化社会的发展,以氮化镓和碳化硅为代表的宽禁带半导体与氧化镓和金刚石为代表的超宽禁带半导体是继硅和砷化镓之后的第三代半导体材料。这个报告主要介绍第三代半导体材料的新进展,对微电子产业或者集成电路产业有所帮助

一、摩尔定律:过去50年半导体产业唯一主题

在过去的50年,摩尔定律,几乎成了半导体产业界唯一的主题。

凯文·凯利在其著作《科技想要什么》中对摩尔定律是否能延续进行了两点阐述:“芯片上的晶体管数目已经足以执行人类想要的功能,只是我们不知道怎么做”“摩尔定律不变的曲线有助于把金钱和智力集中到一个非常具体的目标上,也就是不违背定律。工业界的每个人都明白,如果跟不上曲线,就会落后,这就是一种自驱动前进。”

第一点,按照摩尔定律,如果单芯片到了5nm、7nm,则它可以集成300亿个晶体管。目前芯片上的晶体管数目已经足以执行人类所想要的所有功能,人类目前有没有这样的需求,需要运用一个单芯片上那么多晶体管做什么。

第二点的阐述更接近摩尔定律的实质。摩尔定律不变的曲线有助于把资金和智力集中到一个非常具体的目标上,这就是一种自驱动的前进,产业上面的自驱动前进。当然需要政府,但是更需要一种产业的自驱动前进。

不管怎么讲,集成电路已经走过60年了,现在一方面碰到了很多基础性研究的瓶颈问题,解决起来很困难;另外一方面,人类对信息技术不断的依赖又必须让我们更加强烈地需要技术和原理的创新来支撑这种需求。

如果摩尔定律不再奏效,或者传统硅技术无法满足某些需求之时该怎么办?这时候就需要在材料上下功夫。实际上学术界和产业界也一直在找寻新的半导体材料。目前硅材料还是占了整个半导体材料的绝大部分(90%以上),而第三代宽禁带与超宽禁带半导体越来越得到重视,其中宽禁带半导体商用化程度越来越高,包括氮化镓、碳化硅等,而超宽禁带半导体包括金刚石、氧化镓和氮化铝等研究也有了进展。

主要按照推出时间早晚划分,半导体材料目前已经划分到了第三代。第一代是从集成电路发明开始,最先晶体管是锗材料,后面发展成硅材料。

第二代半导体材料是20世纪八九十年代推出的砷化镓和1990年后才开始真正用到了产业上面的磷化铟材料。

2000年以后,主要是第三代半导体材料,以氮化镓和碳化硅为主。2005年以后开始出现超宽禁带半导体,图1横轴为材料引入时间,纵轴为材料的禁带宽度,4eV以上禁带宽度的材料称为超宽禁带。包括目前比较典型氧化镓、金刚石和氮化铝。这些新材料的引入对半导体体系有很大发展和补充。

图1  半导体材料的划代

由图1列出了各类半导体材料的特性,可以看出,不同的半导体材料其性质相差甚远。例如,功率器件是目前半导体器件的一个方向。材料的功率特性包括电子的饱和漂移速度、击穿特性、热导率等,还有评价半导体材料用于开关器件潜力的巴利加优值,其值越大,器件功率越大,Si、GaAs、4H-SiC的巴利加优值分别为1、5、340,而金刚石的为24664。

表1 半导体材料的特性

图2示出了以GaN和SiC为代表的宽禁带半导体材料与硅材料相比所具有的明显优势。因为这类材料具有宽的半导体带隙、高的电子饱和漂移速度、高的热导率、高的击穿强度,特别适合于制造工作于高频率、高速度、耐高温的半导体器件和短波长光电器件(如蓝光到紫外光LED和光电探测器件)。

随着4G和5G移动通信、雷达探测、轨道交通、光伏发电、半导体照明、高压输变电等应用领域的不断发展,宽禁带和超宽禁带半导体器件已成为国际半导体器件和材料的研究和产业化热点,中国目前在宽禁带半导体器件方面开始全面产业化应用(图3),在超宽禁带半导体器和材料方面取得了很好的基础研究成果。国内在该方面的发展态势也较好。

以照明为例,由于氮化物半导体的兴起,在半导体照明方面取得了很大的进展。2017年国内半导体照明产业产值已经突破了6500亿人民币,2018年可能会更高,据预计会超过7000亿人民币。

同时电子器件方面,尤其是在微波毫米波器件方面已经开始广泛地用于通信、雷达、对抗、卫星等方面,这对硅集成电路来讲是一个很好的补充。

在国家支持下,国内半导体发展呈良好态势,但同时也有一些担忧和困惑:在一些产业兴起时,容易产生一哄而上的局势,形成一个几乎没有什么约束,没有什么规则的发展趋势。

三、氮化物半导体目前的电子器件研发及产业化的热点

氮化镓电子器件是在衬底材料上外延生长势垒层/沟道层材料,该结构可以实现高密度和高迁移率的二维电子气,这是实现微波和大功率半导体器件的关键;硅和碳化硅衬底是主要材料,目前已经开始了进入了氮化镓衬底年代。

与硅相比,氮化物半导体具有以下两个独特优点。

1)氮化物半导体材料可以形成异质结,也即不同的禁带材料可以叠加在一起,形成不同的具有量子的限域性的异质结,在这个异质结里面工作的电子迁移率比三维的电子快得多。因此在做高频器件时,氮化物半导体有优势。

2)电子密度,也即材料中的载流子的密度,不由掺杂决定,而由极化决定。可以用这种性质调节材料各种极化的性能,用材料的禁带宽度来调节载流子的浓度,是非常好的性质,不用去掺各种各样的杂质,只要调节材料的极化特性,就能得到很好的电子浓度。

这两个特性在半导体体系中确实是独特的,而且可以得到很好的应用。

移动通信需要频率越来越高,需要发射的功率越来越大。2017年工信部正式发布5G通信频率:端对端通信频率为28、39GHz,未来将会更高,以满足大规模数据传输的需求;端对手机的频率达到3.3~3.6GHz、4.8~5.0GHz。这对未来化合物半导体的发展,尤其是移动通信的发展提供了非常好的一个市场。

目前454GHz的AlN/GaN HEMT源漏对称器件最高fT为454GHz,同时fmax达到了440GHz,就是说如果该器件正常工作到THz阶段,对于200GHz的工作频率还是有保障的。

再例如,图4所示源漏不对称的氮化镓器件最高fT最高可以达582G,fmax略低,为310GHz,也可以很好地在高频情况下应用。

在高功率情况下,西安电子科技大学成功研发出320GHz的毫米波器件,利用高质量的浮空栅技术,实现了器件的fmax达到了320GHz;另外,实现了在输出功率密度一定的情况下,功率附加效率在30GHz频率下为目前国际GaN基HEMT中最高值。另外,国内已经研究成功了X波段,输出功率可以达3kW,将继续将其发展到5kW。实现其高功率的众多特殊应用。

这些高频、高功率器件下一代通信提供了非常重要的技术保障。另外这种材料的效率高,会大大改进散热和可靠性问题。

由于氮化物具有高耐压及低损耗等特点,已经被电力电子应用关注。

Baliga曲线(图5)阐述了导通电阻和击穿电压的关系,对于一个器件而讲,如果想让器件的击穿电压提升,一定要轻掺杂。但轻掺杂后导通电阻增大。器件的正向导通电阻和反向击穿电压永远是一对矛盾,因此要靠材料来解决是一个很重要的方面。不同的材料,包括碳化硅、氮化镓、氧化镓,用新的材料来解决功率器件、导通电阻和击穿电压之间的关系。

2018年,西安电子科技大学在氮化物电力电子器件气的重要进展,研制成功一个新结构GaN肖特基微波功率二极管,禁带宽度很宽,但开启电压非常低(0.35V,与硅相近),GaN SBD目前最好的BV~Ron,更靠近GaN Baliga理论曲线(图6)。

硅基氮化镓兼具硅的低成本效应以及氮化镓的高频高功率特性。在硅基上面做氮化镓是目前重要的研究内容,未来可以通过与硅的集成电路高度融合,另外可以用目前的集成电路生产线,以更加低的成本实现的功率器件和微波器件等。

四、超宽禁带半导体器件

对于性能更高的诸如金刚石、氧化镓等器件来说,学术界也在进一步研究。

金刚石的问题是研究界共同关心的难题。西安电子科技大学通过消除多晶,扩径生长,扩大了单晶外延层面积,在单个衬底上实现尺寸达12mm x11mm x1.5mm的单晶金刚石的稳定生长,生长速率大于20μm/h。

金刚石由于原子密度大,掺杂和导电比较困难,主要依靠“氢终端表面电导”制备场效应管。但是,金刚石的特性非常之好,我们在氢终端金刚石场效应管的栅极下方引入具有转移掺杂作用的介质MoO3,正向导通电阻降低到同等栅长MOSFET器件的1/3,跨导提高约3倍。

过去氧化物半导体的性能一般,最近氧化镓电子器件性能研究国内外发展较快,在技术方面,国内与国际差距不大。

图7展示了西安电子科技大学在2018年报道的带场板结构的氧化镓SBD,首次实现击穿电压3kV,高开关比108~109,SBD势垒高度1.11eV和理想因子1.25,该器件具有目前最优的BV~Ron。

中国的微电子技术和产业大有希望。2018年是集成电路发明60周年。岁月如梭,时光如箭,学术界和产业界应抓紧目前发展的良好机遇,不断地努力。

如何高度地进一步将资金和人才智力集中到一个明确的方向上来,是值得共同探讨和努力的。

我要回帖

更多关于 半导体为什么用硅不用锗 的文章

 

随机推荐