MR头颅,MR头颅mri解剖结构AR,像DWI像SWI一共需要多长时间?

二、影像学技术细节规范

第二节 卒中中心影像学单元建设标准

二、卒中中心影像学单元建设标准

三、卒中中心影像学检查流程及质控标准

第三节 急性缺血性脑卒中影像学指导规范

第四节 缺血性脑血管病一级预防影像学指导规范

第五节 缺血性脑血管病二级预防影像学指导规范

一、不同检查技术的检查目的

第六节 急性出血性脑卒中影像学指导规范

一、脑出血影像学指导规范

二、蛛网膜下腔出血影像学指导规范

第七节 急性静脉性脑血管病影像学指导规范

第八节 脑小血管病影像学指导规范

《中国脑血管病影像学指导规范》将以中国脑血管病流行病学特征为基础, 充分考虑中国脑血管病诊治临床需求,同时紧密结合国内外脑血管病诊治的最新指南和最新临床研究结果,围绕脑血管病相关影像学扫描、诊断及创新技术的临床应用,提出适合我国脑血管病国情的影像学指导规范及行业标准。

《中国脑血管病影像学指导规范》共分为八个章节,第一章为总论,总论首先对术语进行概括,其次对影像学技术细节进行规范,两部分均为后续章节相关部分范本,后续分章节将根据需要不再对这些术语及技术细节进行描述,或仅进行补充性细节描述。

相关术语中英文对照表详见表 9-1。

表 9-1 脑血管病影像学术语中英文对照表

二、影像学技术细节规范

(1)停用二甲双胍:由于二甲双胍主要经肾脏排泄,一旦发生对比剂肾病,将会产生二甲双胍蓄积和潜在乳酸酸中毒风险,加重肾脏损害。目前欧洲泌尿生殖放射学会及我国相关共识均建议肾功能正常的患者,造影前不必停用二甲双胍,但使用对比剂后应在医师的指导下停用48~72小时,复查肾功能正常后可继续用药;肾功能异常的患者,使用对比剂前48小时应暂时停用二甲双胍,使用对比剂之后还需继续停药48~72小时,复查肾功能正常后可继续用药。

(2)碘过敏试验:鉴于碘过敏试验对于由非离子型对比剂引起的过敏反应预测的准确性极低,以及预试验本身也可能导致严重的过敏反应,因此原则上不建议采用碘过敏试验来预测碘过敏反应,除非产品说明书注明特别要求。

(3)对比剂选择:推荐亲水性较好的非离子型次高渗碘对比剂,或非离子型等渗碘对比剂。依据国内相关指南,选择合适的碘流率(iodine delivery rate, IDR)。碘流率为每秒所注射的对比剂碘量(gI/s),即碘流率=碘对比剂浓度(gI/ml)×对比剂注射流率(ml/s)。在患者体重相同的情况下,动脉血管的强化程度取决于碘流率,因此应根据受检者体重选择不同的碘流率。

(4)射线防护:扫描前为患者佩戴铅衣或铅围裙,做非检查部位辐射敏感器官的防护工作。非必要情况下,禁止家属陪同。若病情需要,家属须穿戴铅衣陪同。

【检查前准备】患者仰卧于检查床,摆好体位,必要时采用头部固定带制动。

【检查目的】检查出病变并明确病变部位及范围。

【扫描参数及技术要点】

定位:以听-眶上线之间的连线为基准行平面扫描。范围:从后颅窝底部向上扫描至颅顶。

层厚:至少为8~10mm层厚,连续扫描。幕下结构建议采用3~5mm层厚连续扫描。

扫描参数:CT 扫描参数依据所用设备不同而有所区别,可参考表 9-2 中的参数。

明确禁忌证:同 CT 增强检查禁忌证。有碘制剂过敏史者,有严重心、肾功能障碍者;患者躁动,无法配合检查者;糖尿病服用二甲双胍者见统一说明。

摆位:患者仰卧于检查床,摆好体位,必要时采用头部固定带制动。

静脉穿刺针:建议至少采用20G×1.16in(1.1mm×30.0mm)规格的密闭式静脉留置针,自右侧肘正中静脉穿刺。

【检查目的】检查出血管病变并评估侧支循环情况。

【扫描参数及技术要点】

对比剂:推荐采用亲水性较好的非离子型次高渗碘对比剂,或非离子型等渗碘对比剂,成人按体重计算用量为0.7ml/kg,约为50~80ml,儿童按体重计算用量为2ml/kg。

高压注射器设置:高压注射器静脉内团注,流率4~5ml/s;或根据患者具体情况,保证全部对比剂在11秒内注入。对比剂全部注入后,以相同流率注入30~ 50ml生理盐水。

扫描方法:启动高压注射器的同时启动 CTA 扫描程序,在 bolus tracking 软件的监测下完成 CTA 扫描。

第1期从主动脉弓扫描至颅顶部;第2期及第3期均为颅底扫描到颅顶部(实线箭头方向),虚线箭头代表在两期 CTA 扫描间隔期的床位移动方向。

扫描参数:在CTA扫描前需要有一个层厚3~5mm的头颅CT平扫,用以评估有无出血或其他高密度病灶。根据各个医院设备状态不同,选用相应的层厚及范围,具备8~16cm宽探测器的多排 CT,建议使用容积轴扫描,层厚0.500~ 0.625mm。建议行增强前后同参数的多期扫描,选取最佳动脉时相与平扫进行减影,获得最佳的去颅骨及钙化的纯动脉血管图像,该技术对虹吸部动脉血管、大脑动脉环的狭窄及动脉瘤显示尤为重要。

目的:显示前循环的颈内动脉(ICA)及其分支、后循环的椎基底动脉及其分支。包括大脑中动脉(MCA)、大脑前动脉(ACA)、基底动脉(BA)和大脑后动脉(PCA)等。

图像后处理基本要求:为获得清晰的颅内前后循环动脉血管及分支,需要采用增强前后的原始减影图像来重建颅脑动脉血管,在急诊状态下,至少提供一个最大密度投影(MIP)的 CTA 参数图像。MIP 图的优点为图像处理速度快,血管狭窄或闭塞的显示受人为因素影响最少。提供全脑及目标血管的血管三维容积再现(VR)和 MIP 图像。

单时相CTA:在急诊状态下,至少提供一个最大密度投影(MIP)重建的CTA 图像,显示脑卒中相关责任血管情况。

多时相CTA:在急诊状态下,至少提供三期 MIP 重建的 CTA 图像,显示脑卒中相关责任血管及侧支循环情况,如图 9-2 所示。单时相与多时相 CTA 的比较请见表 9-3。

CTA 原始图像:将 CTA 原始图像重建为5~10mm/层(与 CTP 扫描选择层面层厚一致),用于观察新鲜梗死区。

需要注意的是,头颈部 CTA 与头颅 CTA 的技术方法和目标存在差异,前者范围大,一般采用增强后螺旋模式扫描,显示主动脉弓上分支及颅内动脉,后处理一般采用各设备商提供的去骨追踪法提取动脉血管,不足之处是虹吸部、大脑动脉环及颅内动脉分支,因骨骼及钙斑的干扰显示不如减影后的头颅 CTA,而后者的不足之处是范围相对窄小,不能评估弓上分支及颈动脉分叉的血管病变。根据各个医院设备状态不同,如果选用8~16cm宽探测器的多排 CT,建议使用容积扫描的增强前后同参数的多期扫描,选取最佳动脉时相与平扫进行减影,获得最佳的去颅骨及钙化的纯动脉血管图像,该技术对虹吸部动脉血管及大脑动脉环的狭窄及动脉瘤显示尤为重要。

【检查前准备】同头颅 CTA。

【检查目的】检查出血管病变。

【扫描参数及技术要点】

对比剂:同头颅 CTA。

扫描延迟时间:采用以扫描范围内动脉为兴趣区,动态监测兴趣区内 CT 值, 当 CT 值升高至预设阈值时自动触发扫描;或采用小剂量对比剂团注试验,根据时间-密度曲线的 CT 峰值时间计算扫描延迟时间。

扫描程序:扫描范围自主动脉弓至颅底大脑动脉环层面,头颈部 CTA 可自主动脉弓至颅顶。层厚0.5~1.5mm,重建间隔取层厚一半。

【图像后处理】提供扫描范围全视野、主动脉弓上动脉、左右颈总动脉分叉、颅内前循环、大脑动脉环、椎基底动脉的血管全景/部分剪辑/局部放大的三维重建图像(推荐 VR 和/或 MIP 图像);沿左、右侧颈总动脉-颈内动脉走行以及左、右侧椎基底动脉走行分别进行曲面重建。如果颈动脉有狭窄,测量狭窄度并标注。重视观察 CT 血管成像的原始数据,重点观察双侧颈总动脉分叉部。

(3)头颅 CT 静脉成像

【检查前准备】同头颅 CTA。

【检查目的】清晰显示静脉窦及脑内静脉,显示细小的静脉窦及深静脉分支情况,评估是否具有静脉窦或者静脉的栓塞。

【扫描参数及技术要点】

范围:从后颅窝底部向上扫描至颅顶。

扫描延迟时间:通过高压注射器自肘正中静脉团注非离子型次高渗碘对比剂,或非离子型等渗碘对比剂,注射速度为3.5~4.0ml/s,总量80~100ml(1.5ml/kg体重),依据静脉窦充盈最高峰来计算扫描延迟时间。

【图像后处理】对原始图像采用多平面重建(MPR),进行轴位、矢状位和冠状位的重建,此外还应进行最大密度重建(MIP)、容积再现(VR)。

【检查前准备】明确禁忌证:同 CT 增强检查禁忌证。如有碘制剂过敏史、严重心、肾功能障碍者;患者躁动,无法配合检查者;糖尿病服用二甲双胍者见统一说明。

【检查目的】显示核心梗死区和缺血半暗带,评估血脑屏障(BBB)破坏情况,评估血流动力学变化。

【扫描参数及技术要点】

对比剂:同头颅 CTA。

注射方式:高压注射器静脉内团注,流率5~6ml/s。

扫描:启动高压注射器注入对比剂的同时进行 CTP 扫描。

范围及层厚:根据医院多层螺旋 CT 装备水平,可选择全脑容积或者部分灌注成像。全脑容积灌注成像为覆盖全脑,从后颅窝底部向上扫描至颅顶;部分灌注成像为根据 CT 平扫结果,在病变区域选择1~4层感兴趣层面进行扫描,为保证图像质量,幕上病变尽可能选择基底核层面和侧脑室体部层面进行 CTP 扫描。

扫描程序:16层螺旋 CT 能够扫描12mm厚的脑组织,64层螺旋 CT 扫描范围为40mm,256层螺旋 CT 扫描范围增加至80mm,320 层螺旋 CT 扫描范围为160mm。层厚0.5~2.0mm,重建间隔取层厚的一半。管电压80~120kV,管电流120~150mA,开始注射对比剂后4~8秒做动脉期连续扫描,扫描速度为1s/360°,间隔时间1秒,扫描时间50秒。如果患者血流缓慢,脑循环时间延长需适当增加扫描时间。为了减少扫描时间延长导致的放射剂量增加,可以采取分2~3个阶段扫描的方式。比如第一阶段40秒,每1秒扫描1次;第二阶段35~45秒,每2~3秒扫描1次;如需要获得微血管通透性图,则要再进行第三阶段2分钟扫描,每10~15秒扫描1次。

【图像后处理】一般应用 Perfusion 专用软件包进行后处理。以单点取样方式分别在正常侧大脑中动脉与上矢状窦选择输入动脉与输出静脉,并由分析软件自动生成,可得到脑血流量(CBF)、脑血容量(CBV)、平均通过时间(MTT)、达峰时间(TTP)、残余功能达峰时间(Tmax)、表面通透性(PS)等参数图。图像的定量分析可以采用半自动及自动分析方法。半自动的方法一般由医师根据肉眼观测的异常区域手动勾画感兴趣区(region of interest,ROI),测得 ROI 内各灌注值;数据的分析采用相对值,以对侧正常区域的灌注值为参照,计算异常侧与正常侧灌注值的比值。在一些脑灌注后处理软件中,也可以通过设定阈值, 自动标识出梗死核心区和缺血性半暗带,并计算体积。各 CT 设备厂商均配备相应的后处理软件,彼此之间兼容性差,参数表达也存在一定差异。自动分析可以借助第三方的软件,自动得出异常区域的体积等。

(1)患者检查前应先清空随身携带的各种物品,去除患者体外金属物体, 告知受检者检查过程中保持静止不动,否则会影响检查结果的准确性,检查所需的大概时间,检查过程中如有不适应怎样通知操作人员。确定有无 MR 扫描禁忌证。

(2)禁忌证包括:有钆制剂过敏史;体内安装心脏起搏器者;严重心、肾功能障碍者;患者躁动,无法配合检查;患者或家属拒绝此项检查;急诊危重患者;无临床医师陪同的患者等。

(3)静脉穿刺针:建议至少采用20G×1.16in(1.1mm×30.0mm)规格的密闭式静脉留置针,自右侧肘正中静脉穿刺。

(4)对比剂:使用钆对比剂,推荐大环状对比剂。对比剂用量推荐使用0.1mmol/kg 进行个体化用药。

(5)线圈:通常应用普通头线圈或头颈联合线圈扫描,现有临床常用线圈一般为8通道线圈,但20通道以上或32通道线圈可得到更佳的图像质量。

(6)检查体位及定位:受试者取仰卧位,双手置于身体两侧。人体长轴与床面长轴一致。头部置于头托架上,放置头线圈,以内外眦连线为中心定位,对准十字定位灯的横向连线。头颅正中矢状面尽可能与线圈纵轴保持一致并垂直于床面,对准十字定位灯的纵向连线。头部两侧加海绵垫以防止头部运动。

(7)检查中止:患者在检查过程中躁动,无法继续扫描;对疑似缺血性脑卒中的患者,MR 平扫发现脑内出血或其他非缺血性病变,将不再进一步进行MRA 及 PWI 扫描;检查过程中出现严重对比剂过敏反应者;患者病情变化,需要立即停止检查进行抢救者。检查中止将适用于所有的 MRI 检查。

(8)关于植入物行 MRI 检查的说明,请参考《磁共振成像安全管理中国专家共识》。

2. MR 平扫及增强扫描

【检查前准备】见 MR 检查前准备。

【检查目的】检出病变并明确诊断。

【扫描参数及技术要点】

定位:以颅脑前后联合之间的连线为基准平面进行横断面扫描。

范围:上起颅顶头皮,下至后颅窝底部。建议增加一个序列的矢状位或冠状位扫描。扫描序列包括 T1WI、T2WI、T2-FLAIR 和 DWI。推荐层厚5mm,如果有三维各向同性的薄层扫描更佳。增强扫描需至少一个方位增加脂肪抑制,推荐三个方位扫描均增加脂肪抑制序列。需要注意的是,在急性缺血性脑卒中患者的MR 检查中,DWI 及 T2-FLAIR 是必扫序列。

【图像后处理】DWI 需有双 b 值(0、1000),以得到 ADC 参数图。

【检查前准备】同 MR 检查。

【扫描参数及技术要点】根据定位像进行轴位全脑扫描。以下参数作为参考:采用三维高分辨率磁敏感成像技术,TR=40毫秒,TE=25毫秒, FOV=230mm×230mm,矩阵320×320,层厚1~3mm,层间距0mm,带宽25kHz, 翻转30°,采集次数1。

【图像后处理】对脑内静脉血管,尤其是脑小静脉,需进行 MPR 或 MIP 轴位重建图像。

(1)非增强头颅 MRA

【检查前准备】同 MR 检查。

【检查目的】检查出血管病变。

【扫描参数及技术要点】扫描序列及参数举例如下:非增强头颅 MRA 推荐采用三维时间飞跃磁共振血管成像(3D TOF MRA),定位线设置为胼胝体膝和压部连线,检查采用无间距连续扫描,横断位采集,回波时间(TE)=2.5ms, 反转角20°,层厚1.4~1.6mm,激励次数(number of excitation,NEX)=1。

【图像后处理】采用最大密度投影(MIP)重建,充分显示双侧 ICA 颅内段、MCA、ACA、双侧椎动脉末段、基底动脉、双侧 PCA 及大脑动脉环。同时要重视观察原始数据,有助于准确评估血管情况。

【检查前准备】见 MR 检查前准备。

【检查目的】明确有无头颅动脉狭窄及其程度。

【扫描参数及技术要点】

范围:从后颅窝底部向上扫描至颅顶。

采用3D CE-MRA技术,由于脑血流的快速循环,头部动脉与静脉强化的时间窗窄,容易受到静脉信号的干扰,推荐用试验性团注法计算扫描延迟时间,行冠状面采集。钆对比剂用量0.2~0.6ml/kg,高压注射器流率设置为3ml/s,注射对比剂结束后以同样流率的生理盐水20ml冲洗。

【图像后处理】提供全脑及目标血管的三维 VR 和三维 MIP 图像,以显示颅内血管狭窄或闭塞状况;对病变局部切割放大显示;对动脉狭窄处进行狭窄程度测量并标注。同时要重视全面观察原始数据,有助于判断责任血管的病变。

【检查前准备】同头颅 CE-MRA。

【检查目的】判断主动脉弓上头颈部动脉及其分支的狭窄闭塞情况,了解颈动脉斑块状况。

【扫描参数及技术要点】

推荐测试扫描:推荐记录每例患者的对比剂从肘静脉至颈动脉的循环时间。临床上个体之间的循环时间差异甚大(8~28 秒),准确的循环时间能确保血管成像的成功。测试扫描的另一优点是可检查注射套管是否通畅,静脉管壁是否损伤,能避免在后续造影中对比剂大量外渗至软组织中。自动触发或透视触发也能准确捕捉颈动脉内对比剂的峰值时间,且能简化扫描程序,但它易产生环状伪影, 不能预知注射导管是否通畅。因此,推荐先测试、后造影的程序。

3D MRA 采集时间的选择:对比剂从颈动脉循环至颈静脉的时间窗是4~8s, 扫描的K空间中心部分最好落在这个时间窗,才能获得最佳的动脉血管成像效果,避免静脉的重叠。因此,所选3D扫描序列的采集时间最好不超过18秒(K空间时间段为9~12 秒),为保证高矩阵(512×512)的高分辨率,可采用并行采集技术缩短扫描时间,否则只能牺牲三维方向中两个方向的分辨率来缩短扫描时间。也有研究认为,在颈血管 CE-MRA 检查中,高分辨率图像对血管狭窄的评估及头颈部细小血管分支的显示更好,高分辨率的扫描可长达2分钟以上,即使有静脉影重叠,工作站的后处理仍可剔除静脉影,突出动脉显示。

对比剂用法:颈动脉 3D CE-MRA 对比剂总量25~30ml,流率2.5~3.0ml/s。扫描延迟时间可简化为:D=TV-A-TA/4,TV-A为从穿刺静脉到靶血管的时间,TA 为所采用的快速扫描序列的扫描时间。

扫描要点:扫描范围下缘应包括主动脉弓,上缘包括大脑动脉环,采用头颈联合线圈,加颈部脊柱线圈,冠状面采集。呼吸伪影对主动脉弓上分支起始部的显示有一定影响,但屏气扫描也会产生增强前后的采集误差,原则上采用非屏气扫描,如怀疑伪影导致动脉假性狭窄或显示不良,可择日再行屏气检查。

【图像后处理】提供扫描范围全视野、主动脉弓上、左右颈总动脉分叉、颅内前循环、大脑动脉环、椎基底动脉的血管全景/部分剪辑/局部放大的三维重建图像(推荐 VR 和/或 MIP 图像),以显示颈部和颅内血管狭窄或闭塞状况、以及一、二级侧支代偿情况;对病变血管局部放大显示;对动脉狭窄处进行狭窄程度测量并标注;同时要重视观察原始数据,有助于判断责任血管病变。

(4)非增强 MR 静脉成像:

时间飞跃法静脉成像(TOF MRV)、相位对比法静脉成像(PC MRV)。

【检查前准备】同 MR 平扫。

【检查目的】初步了解颅内静脉窦及较大静脉的情况,是否有静脉窦闭塞, 是否具有侧支循环形成。

【扫描参数及技术要点】TOF MRV 根据定位像进行斜矢状位扫描,轴位上定位线向左或右侧倾斜 20°~30°,冠状位倾斜 20°~30°,以减少扫描平面与血流方向平行而造成的信号丢失。扫描范围为全脑。

【图像后处理】进行 MIP 重建,并进行不同方向、不同角度的旋转,以便全面观察颅内静脉、静脉窦。

(5)钆剂增强 MR 静脉成像(CE-MRV)

【检查前准备】同 CE-MRA。

【检查目的】清晰显示静脉窦及脑内静脉,显示细小的静脉窦及深静脉分支情况,评估是否具有静脉窦或者静脉的栓塞。

【扫描参数及技术要点】可参考扫描参数及流程如下:应用钆对比剂0.2ml/kg,高压注射器自肘静脉给药,流率为2.5ml/s。首先进行头颈部3D快速小角度(fast low angle shot,FLASH)序列平扫,然后进行冠状位峰值测试(test bolus)扫描,注射对比剂后实时观察双侧横窦远端信号,当横窦内对比剂达最大浓度时启动 FLASH

【图像后处理】利用减影功能,选择注射对比剂后第一期源图数据减去注射对比剂前数据,得到减影后的图像。利用工作站3D软件进行三维重建及 MIP 重建。

(1) 动态磁敏感对比增强灌注成像(DSC)

【检查前准备】同 CE-MRA。

【检查目的】了解脑组织血流灌注情况。

【扫描参数及技术要点】

感兴趣层面选择:根据所使用 MR 成像设备的实际情况,进行全脑覆盖的MR 灌注扫描。

MR 对比剂:根据患者体重采用钆对比剂。

高压注射器:流率设置为4~5ml/s,对比剂用量为0.1~0.2mmol/kg。

扫描:通常采用平面回波成像序列(echo-planar imaging sequence,EPI)采集大脑横轴位图像,多期扫描(如60期),在前几期(如第6期)开始采集时启动高压注射器注入对比剂,在前几期采集过程中可观察图像有无明显变形或伪影,如有异常,可及时停止扫描查明原因。

【图像后处理】使用相应后处理软件,首先进行图像运动校正,其次选择动脉输入函数,可以得到CBF、CBV、MTT、TTP、Tmax等参数图。

(2) 动脉自旋标记(ASL)

【检查前准备】同 MR 平扫。

应用1.5T或3.0T磁共振扫描仪,头线圈或者头颈联合线圈。患者取仰卧位, 头部置于头托架上,以内外眦连线为中心定位,头部两侧加海绵垫以固定头部。需注意颈部有无干扰磁场的金属物品,如有需去除。

【检查目的】评价脑血流情况,脑侧支循环情况等。

毫秒,层数为36,FOV=24cm×24cm,矩阵 128×128,采集时间4 分29秒;对于病情稳定的患者, 可采用多标记后延迟时间的扫描策略进行脑血流动力学评估及缺血性脑血管病 患者侧支循环评估,如采用 PLD 为1.5秒及2.5秒的策略。

【图像后处理】3D ASL 原始图像传输至工作站,利用后处理软件获得反映脑组织灌注情况的 CBF 图,可添加伪彩色进行观察。

【检查前准备】同 MR 平扫。

为了同时满足高图像分辨率和信噪比(SNR),颅内动脉 MR-VWI 通常在3.0T或以上的 MR 机器上完成。通常应用普通头线圈或头颈联合线圈扫描,现有临床常用线圈一般为8通道线圈,但20通道以上或32通道线圈可得到更佳的图像质量。

【扫描参数及技术要点】

三平面定位扫描:采用快速序列进行标准三平面定位扫描,获取头部定位图像。

血管定位像扫描:推荐应用横轴位 3D TOF MRA 成像,以便后续管壁成像提供目标血管的定位图像。

主要技术要求如下:高空间分辨率;2D/3D 采集;多对比加权;血液和脑脊液信号的有效抑制。

成像范围:包括大脑中动脉 M1 和 M2 段,大脑前动脉 A1 和 A2 段,颈内动脉破裂孔段(C3)到交通段(C7),大脑后动脉 P1 和 P2 段,基底动脉和椎动脉 V4 段。

3D 管壁成像:垂直于目标血管走行进行多平面重建(MPR),以轴位显示管腔及斑块,重建层厚 1~2mm;根据病变情况可平行于目标血管走行进行 MPR 和/或曲面重建(CPR)。

【检查前准备】同 MR 平扫。

患者取仰卧位,颈部自然伸展,左右线圈对称置于患者颈部,线圈中点与观察野中点(颈动脉分叉:约胸锁乳突肌中点水平)一致,头部两侧加海绵垫以确保在扫描时保持头颈部静止。告知患者在扫描过程中不要运动、吞咽、咳嗽等, 配合固定体位。

MR 设备:1.5T或以上场强的 MR 设备,推荐应用3.0T的高场磁共振成像系统及颈动脉专用线圈提高图像信噪比。

【扫描参数及技术要点】

三平面定位扫描:采用快速序列进行标准三平面定位扫描,扫描定位中心位于下颌角。

血管定位像扫描:推荐横轴位 2D TOF 成像,以 C3/4 椎间盘或下颌骨下缘为中心进行定位。

MR 成像范围:横轴位2D序列扫描包括颈动脉分叉为中心上下各 20~ 25mm。3D序列尽量增大扫描范围,一般可包括以颈动脉分叉为中心上下各50~55mm。检测动脉包括双侧颈总动脉末端、颈内动脉起始部及颈外动脉起始部。以二维扫描序列为例,定位时以颈总动脉血管分叉为中心,由于左、右颈总动脉分叉部的位置高低会略有不同,因此建议以颈动脉狭窄程度较重的一侧,或者通过 TOF 序列初步观察到具有斑块内出血或者溃疡的一侧为定位侧,如此选择的目的,是便于多次随访复查时与较严重一侧的病变做比较。

多对比序列成像:颈动脉斑块MRI 常规的扫描序列包括T1WI、T2WI、3D TOF 及增强 T1WI 扫描,建议有条件的医院加扫特殊的管壁成像序列,如 MP-RAGE 等;由于上述多序列成像扫描时间长,因此目前临床工作中建议至少要完成平扫及增强 T1WI、3D TOF 这三个序列,扫描时间约25分钟。进行增强 T1WI 时,

【图像后处理】3D管壁成像可垂直于目标血管走行进行 MPR,以轴位显示管腔及斑块,重建层厚1~2mm;同时根据病变情况平行于目标血管走行进行MPR 和/或 CPR。

第二节 卒中中心影像学单元建设标准

脑卒中是重大的致死、致残性疾病,导致了沉重的社会经济负担。脑卒中患者急性起病后病情变化快,强调急诊科、神经内科、神经外科、介入科、影像科和检验科等多学科、多环节的协同配合。影像科精准评估对制订诊治方案和分流途径至关重要。基于此背景,国家卫生健康委脑卒中防治工程委员会医学影像学专业委员会组织编写组,结合国内外研究进展,撰写卒中中心影像学单元建设标准,以期推动卒中中心影像学单元的规范化建设以及脑卒中的规范化诊治。

二、卒中中心影像学单元建设标准

(一)防治卒中中心标准

1. 基本条件及组织管理(医院层面)

(1) 二级甲等综合医院或相关专科医院。

(2) 成立以主管业务领导为主任,以相关职能部门、临床、医技和信息部分科室负责人为成员的卒中中心管理委员会,下设办公室,明确部门与学科职责及工作制度。

(3) 成立脑卒中诊疗团队,成员包括急诊科、神经内科、神经外科、介入科、影像科、检验科和康复科等专业的医务人员。医院设立脑卒中急诊诊疗窗口, 保证卒中中心绿色通道顺畅。

(4)建立与基层医疗机构对口帮扶和协作关系。建立与高级卒中中心会诊、远程脑卒中救治及患者转诊的机制和制度。

(5)在急性脑卒中的急诊影像学检查流程中,先诊疗后付费与脑卒中医师陪检制度是绿色通道的基本要求。脑卒中医师在陪检过程中起到安全保障、与影像医师共同协商和及时提供治疗决策、知情同意以及人员协调等重要作用。

2. 建设要求(影像科)

(1)医院布局合理,开辟脑卒中影像学检查绿色通道,急诊影像学检查区域最好建在急诊区域内,至少应该尽量靠近急诊区域。

(2)防治卒中中心推荐配置16排及16排以上级别的 CT。具备实现头颈部 CTA 扫描的能力。后处理平台能够对颅内大血管状态进行分析。以 MR 作为影像学评估手段的防治卒中中心,推荐配置至少1.5T场强的 MR 扫描仪,能够完成液体衰减翻转恢复序列(FLAIR)、弥散加权成像(DWI)、磁敏感加权成像

(SWI)、MR 血管成像(MRA)等扫描序列。影像学检查为静脉溶栓和后续转诊提供支持。

(3)配置处理脑卒中或影像学检查相关并发症的急救药品和器械。

(4)同时配置影像技术人员和影像诊断、护理岗位。

3. 服务要求(影像科)

(1)能够24 小时×7天提供 CT 检查及诊断服务。脑卒中患者优先行 CT 或MRI 检查。

(2)急诊诊疗过程中,至少完成 CT 平扫。推荐开展 CTA 或 MRA,为转诊提供支持。

(二)高级卒中中心标准

1.基本条件及组织管理(医院层面)

(1)三级综合医院或相关专科医院。

(2)成立以主管业务领导为主任,以相关职能部门、临床、医技和信息部分科室负责人为成员的卒中中心管理委员会,下设办公室,明确部门与学科职责及工作制度。

(3)成立脑卒中诊疗团队,成员包括急诊科、神经内科、神经外科、介入科、影像科、检验科、心脏科、康复科和重症监护等专科的医务人员。医院设立脑卒中急诊诊疗窗口,保证卒中中心绿色通道顺畅。

(4) 脑卒中诊疗团队定期召开质控会议,持续改进诊疗质量,并客观记录。

(5) 在急性脑卒中的急诊影像学检查流程中,先诊疗后付费与脑卒中医师陪检制度是绿色通道的基本要求。脑卒中医师在陪检过程中起到安全保障,与影像学医师共同协商,及时提供治疗决策、知情同意以及人员协调等重要作用。

2. 建设要求(影像科)

(1) 卒中中心影像学检查区域的规划,以“方便、快速”为第一原则。急诊影像学检查区域最好建在急诊区域内,至少应该尽量靠近急诊区域。

(2) 高级卒中中心推荐配置64排及64排以上级别的高端 CT。具备实现多时相 CTA 和全脑覆盖 CT 灌注成像的扫描能力。后处理平台能够对侧支循环和脑灌注状态进行分析。以 MR 作为影像学评估手段之一的高级卒中中心,推荐配置1.5T及1.5T以上场强(3.0T 为佳)的 MR 扫描仪,能够完成液体衰减翻转恢复序列(FLAIR)、弥散加权成像(DWI)、磁敏感加权成像(SWI)、MR 血管成像(MRA)、MR 灌注成像(PWI)等扫描序列。影像学检查将为静脉溶栓和动脉取栓提供支持。

(3) 配置处理脑卒中或影像学检查相关并发症的急救药品和器械。

(4) 同时配置影像技术人员和影像诊断、护理岗位。

3. 服务要求(影像科)

(1)能够24 小时×7天提供 CT 检查及诊断服务。脑卒中患者优先行 CT 或 MR 检查。

(3)诊断岗位能独立、熟练地完成 CTA/MRA 和 CTP/PWI 的图像后处理及分析。

(4)诊断岗位需要与溶栓、取栓医师共同完成图像判断,规范化地完成影像学诊断报告。

(5)配置脑卒中影像诊断质控医师,定期参加卒中中心质控会议,持续改进影像学检查和诊断流程。

(6)脑卒中影像学诊断质控医师应积极参与脑卒中患者的临床随访。加强急性缺血性脑卒中患者取栓后再通和再灌注的影像学评估。

(7) 高级卒中中心能够通过多种途径,为下级卒中中心提供远程会诊。

(8) 高级卒中中心影像科需要指导下级卒中中心影像学检查和诊断体系的建立,规范脑卒中患者的诊疗工作。

三、卒中中心影像学检查流程及质控标准

(一)急性脑卒中影像学检查推荐流程

本指导规范中对急性脑卒中影像学检查流程进行了推荐,具体流程可见本指导规范第三节中“技术规范化应用”相关内容。流程的制定是在急性脑卒中患者临床管理流程的基础上进行的,目的是使影像科医务工作者对急性脑卒中救治进行系统性学习及梳理,以帮助其在实际工作中针对扫描及诊断进行合理决策,但目前针对急性脑卒中临床管理流程的一些具体环节尚无定论,或存在争议,本指导规范所提供的流程可能无法涵盖所有情况,各单位还需根据相关指南及其更新情况,结合实际进行调整。

(二)卒中中心影像学单元相关质控标准

脑卒中患者(尤其是发病6小时内到达医院的急性缺血性脑卒中患者),从到达急诊到开始做影像学检查的时间。

主要是 CTA/MRA 和 CTP/PWI 检查的成功率。重点关注图像质量。

3. 影像学诊断报告规范化

推荐按照缺血性脑卒中影像学指导规范内的结构式诊断报告模板完成报告。

摘自脑卒中防治工程委员会专家编制的《中国脑卒中防治指导规范(2021版)》,原载于国家卫生健康委官网

1. 总体:近几年发展很快,总体水平落后---- 设备性能、设备数量。
2. 发展不平衡:城市发展较快、农村仍然落后。

(二) 诊断:整体上与国际先进水平仍有一定差距。
1. 影像诊断学仍处在以形态学为主的阶段。
2. 介入放射学发展很快,总的看新技术发展较慢。
3. 基础、实验研究和新技术开发薄弱,缺少创新。
4. 放射科医生和技术人员素质不适应影像学发展要求。

(一) 1895年X线被发现,百余年来有很大发展

2. 洗片机技术的发展:暗室水洗——自动洗片
3. 数字图像的拷贝:
干式打印机(直热式打印技术,光热成 像打印技术,激光诱导成像技术)。
4. 胶片质量的改进:感蓝、感绿、激光胶片、干式打印胶片。

(二)1972年CT发明,(数字成像进入体层成像和电子计算机重建图像为基础的新时期) 1978年我国引进第一台,2001年底有5000台。

3. 多层螺旋CT(MSCT):降低X线管耗损, 扫描覆盖范围更长,扫描时间更短,扫描层厚更薄,提高三维成像质量。

6. 容积CT:增加探测器宽度,提高空间分辨力,高级重建功能,整体容积信息。

1、CR的优点:X线剂量少,成像板(imaging plate IP)板可以重复使用,匹配原来的X光机,具有多种后处理技术,可以存储、连网,使资源共享,并具有高灵敏度和高分辨力(3.3LP/mm)。

2、DR的优点:90年代中期临床应用。DR是在具有图像处理功能的计算机的控制下,采用一维或二维图像探测器直接把X线摄影信息转化为数字信号的技术。除具有CR优点外,DR的图像层次更丰富,操作更方便,成像时间短。

2. 磁体:80-90年代发展主流 常导——永磁——超导

5. 近年,射频技术,多采集元、多通道、多接收器。

1. 应用计算机技术存储和管理数字医学影像资料。
2. 光盘存储,无胶片存储和管理。
3. 利用网络技术,图像资料共享。
4. 远程影像和医学会诊。
5. 应用多种图像处理手段,大大丰富医生的诊断信息。
6. 影像重建速度快,减少病人候诊时间。

PET扫描器和CT扫描器结合在一起,二种图像互相融合,既能发挥PET对病灶功能、定性的优势,又能发挥CT解剖定位的优势。主要用于肿瘤、心脏、神经系统病变。

三、 医学影像学的发展方向
(一)大体形态学为主的阶段向生理、功能、代谢和/或基因成像过渡,分子影像学。

(二)对比增强由一般性向组织和/或疾病特异性发展。

(四)诊断模式由胶片采像和阅读向数字采像/电子传输(无胶片放射学)方向发展。

(五)介入治疗向实时、立体和少/无射线 引导,进而与内镜、微创治疗/外科的融合发展。

当时,他在暗室内用高电压电流通过压气体克鲁克斯管(Crookes’tube)作阴极射线的研究,克鲁克斯秘附近的一块表面涂有铂氰化钡结晶的纸板上发生荧光。进一步研究证明,荧光是由高电压电流通过克鲁克斯管时产生的一种看不见的新射线所引起。

这种射线能穿透普通光线不能穿透的纸板,并能作用于荧光屏而产生荧光。进一步实验,发现这种射线也能透过木板,即使一本厚书,也能透过而使荧光屏发亮。对重金属如铜、铁、铅等则不易透过。当伦琴将手放在管和荧光屏之间时,在荧屏上看到肌肉透亮,而骨骼则为黑影。他还发现这种新的射线具有摄影作用,可把手在照相玻璃板上摄成照片。伦琴将他的发现于1896年1月23日正式公布于式,由于不明了这种射线的性质,所以伦琴把这种射线称为X线,科学界又称之为伦琴射线。

X线的伟大发现,无论是在近代科学理论上或在应用技术上,特别是对医学科学领域内的不断创新和突破都有十分重大的意义。

1.放射诊断学:应用X线透过人体后,是人体内部结构和器官在荧光屏或X线片上显影,从而可以了解人体解剖与生理功能及病理变化对疾病诊断。

2.影像诊断学:CT,ECT,MRI,SPECT,PET通过使人体内部结构和器官成像来了解人体解剖与生理功能及病理变化,达到诊断目的,属于活体器官的视诊范畴,是特殊的诊断方法。

3.影像诊断学(medical imagelolgy):是阐明利用影像表现的特点在临床医学上进行诊断工作的一门临床科学。

4.医学影像学:70年代兴起的介入放射学,使影像诊断学发展为医学影像学。

(一) X线的产生和特性
1、X线的产生 X线是在真空管内高速行进的电子流轰击钨靶产生的。

X线属于电磁波,波长0.0006—50nm(应用波长范围 0.008nm—0.031nm, 40—150KV,比可见光波长短、肉眼看不见)

穿 透 性:强穿透力,是X线成像的基础。穿透力与X线管电压密切相关(电压越高、X线波长短、穿透力强),穿透物体的程度与物体的密度和厚度相关。

荧光效应:X线作用于荧光物质能激发荧光物质,使波长短的X线转换成波长长的可见荧光,是进行透视检查的基础。

感光效应涂有溴化银的胶片,经X线照射后,感光而产生潜影,经显定影处理,产生黑白影像。是X线摄影的基础。

电离效应X线通过任何物质都可产生电离效应。是X线测量和放射治疗的基础。

(二)X线成像基本原理
X线影像形成的三个基本条件:
1 X线具有一定的穿透力,能穿透人体的组织结构。
2 被穿透的组织结构,存在着密度和厚度的差别。
3 穿透人体以后有差别的剩余X线转变为可见的黑白对比的影像。

人体的组织结构密度可归纳为三类
高密度 骨组织和钙化灶;
中等密度 软骨,肌肉,神经,实质器官, 结缔组织及体液;
低密度 脂肪组织和空气。
病变可使人体组织密度发生改变。

1 通常用密度的高低表达影像的白与黑。
2 X线图像是某一部位不同密度和厚度组织结构的叠加影像。
3 X线影像的放大,失真,伴影。

放大摄影: 荧光摄影:

3 造影检查:对缺乏自然对比的结构和器官,可将密度高于或低于该器官或结构的物质引入器官内或周围间隙,使之产生对比显影。

1)高密度对比剂 (原子序数高、比重大):

碘剂 :有机碘对比剂:离 子 型 :高渗—毒副作用

造影检查(contrast examination)则是将对比剂引入器官内或其周围,人为地使之产生密度差别而显影的方法。造影检查显著地扩大了X线检查的范围。

②不易为X线透过的钡剂和碘剂,常称之为阳性对比剂。

对比剂引入人体的途径与方法有直接引入和生理积聚两种。

(1)直接引入:除胃肠钡餐造影可以口服外,大多需要借助工具,如导管、穿刺针等,将对比剂引入管道或空腔脏器中。例如支气管造影;膀胱造影,钡剂灌肠;心血管造影;

(2)生理积聚:生理积聚是对比剂在体内的生理吸收与排泄。也就是将碘剂通过口腔或经血管注入体内后,使其选择性地从一个器官排泄,暂时存于其实质或其通道内而显影。经静脉肾实质或肾盂造影,口服胆囊造影和静脉胆道造影是常用的利用生理积聚的造影方法。

(1)给药方式:造影剂的浓度、剂量、速度和注入部位与反应的发生有关。超过允许的浓度与剂量,又注射过快,将增加反应发生的机会。

(2)对比剂本身:对比剂反应与对比剂的离子化,对比剂的渗透压,粘稠度以及对比剂毒性有关。研究证明阳离子可引起对比剂的反应。葡胺盐比钠盐好,但也有缺点,它的粘稠度大,可在微血管内形成异物团,造成局部缺血、缺氧,对造成组织胺的释放也较强。同时,粘稠度在给快速注射带来困难。对比剂渗透压较高,高者可比血液高8倍,可引起血细胞变形、丧失弹性,改变血流动力。最后,对比剂分子可引起血清补体的激活,促使释放过敏毒素、组织胺等引起平滑肌收缩,微血管增渗等反应。

(3)病人体质:与反应的发生及其程度有关。除过敏体质外,病人的年龄,有无慢性病,乃至精神状态都有重要关系。诸如高血压、动脉硬化、冠心病、癫痫、甲状腺机能亢进、肾与肝功能不良、水盐代谢平衡失调等症。在病人处于恐惧、紧张状态下进行造影,也易发生反应。因此,有人认为对比剂对中枢神经系统的作用是引起严重反应的外因,而恐惧心一则是其内因。

(1)了解有无禁忌症:对碘过敏、甲亢、心、肾功能代偿不足应禁忌造影。肝功能严重损害及多发性骨髓瘤病人,进行造影应慎重,并权衡利弊。

(3)过敏试验:静注法,即用该对比剂1ml静注后观察15分钟,如无反应,即认为过敏试验阴性,可行造影。如出现荨麻疹、唇舌水肿等则为阳性,不应造影。

(4)过敏反应的抢救:应准备好必要的设备、材料、药物等。在给对比剂时和以后的一段时间内应不断观察病人,如有反应应立即采取措施。如在注射过程中发现应立即停止注射速用氧气面具,进行抢救。

对比剂严重反应常是突然发生,如不准备,就可能措手不及,故在造影前,应做好充分准备。应准备好必要的设备、材料、药物等。在给对比剂时和以后的一段时间内应不断观察病人,如有反应应立即采取措施。如在注射过程中发现应立即停止注射速用氧气面具,进行抢救。

(1)过敏反应型包括荨麻疹、支气管痉挛、鼻咽、口、舌及肺部水肿等,可使呼吸困难达窒息程度。可静注扑尔敏10㎎;皮下注射肾上腺素0.5㎎及皮质激素类药物,如静注氢可琥钠(sodium hydrocortisone succinate)100㎎,甲泼琥钠40㎎或地塞米松10㎎等。必要时可气管插管给氧。最近报道有加用抗H2受体的药物,如甲氰米胍300㎎。

(2)神经系统障碍,表现为抽搐、癫痫。可静注安定注射液10㎎,重复多次给药,也可给皮质激素类药及补充血容药物。

(3)循环系统可有血压下降、循环衰竭等。应将病人仰卧,足部抬高,静注甲氧胺5㎎,可每3分钟注射1次。也可给皮质激素类,还可重复给药。

(4)严重者出现心脏停搏。抢救时要抬高足侧,进行心脏按摩。呼吸困难,可进行口对口人工呼吸给氧等。

在对心脏骤停和呼吸停止进行抢救时,为了帮助记忆,可记住A、B、C、D。A为airway(气道),需保持通畅,拉出舌以免舌根阻塞气道,要清除咽内粘液;B为breathing(呼吸),可口对口行人工呼吸,并给氧;C为circulation(循环),心跳骤停时,应行体外心脏按摩;D为drugs(药物),根据情况给以药物治疗。

选择原则:安全,准确,简单,经济

(六)X线诊断的临床应用
X线诊断仍然是影象诊断中使用最多最基本的方法。

数字X线成像是将普通X线摄影装置或透视装置同电子计算机相结合,使X线信息由模拟信息转变为数字信息,得到数字图像。

分为:CR:以IP板(IMAGING PLATE)为载体,经X光曝光及信息读出处理形成数字式平片影像。

DF(数字荧光成像):用IITV(Imaging intensive TV)代替X线胶片或CR的IP作为介质,IITV上的图像用高分辨力摄像管行序列扫描,将连续的视频信号转变为各自独立的像素,经A/D将每个像素转变为数字。

Flat panel detedtors(平板探测器):用平板探测器将X线信息转换成电信号,在行数字化。(信息损失少、图像质量好)

一. CR成像基本原理与设备
(一)影像信息的记录 IP(BaFX:Eu2+)
(二)影像信息的读取 激光扫描系统 光电转换器 放大 A/D转换器

数字减影血管造影处理,得到DSA图像。

DF是使人体在IITV上成像,用高分辨率摄像管对IITV上图像扫描,把所获得连续视频信号转为间断独立的信息,犹如把IITV上图像分成一定数量的小方块即像素,经AD(analog-digital converter)将每个像素转为数字,并按序列排列成数字矩阵,这样图像就被像素化合数字化。

行血管造影并获得一系列多帧数字化图像,这样经计算机在数字化图像之间进行减影处理。减影后的数字化图像经DA转化为模拟图像显示于荧屏上。

时间减影法(temporal subtraction method):此种减影图像因系不同时间获得,故称时间减影法
DSA设备包括IITV,高分辨力摄像管,计算机,磁盘,阴极线管和操作台。

DSA 适用于心脏和大血管的检查。
IADSA应用于显示颈段和颅内动脉。
DSA在介入技术中的应用。

CT:应用X线束对人体层面扫描取得信息,经计算机处理获得重建图像,是数字图像而非模拟图像

CT图象是一定数目像素组成的灰结图像,是重建的断层图象。

体素:图像形成的处理有如将选定的层面分成若干体积相同的长方体。

像素:经digital analog converter把数字矩阵中的每一个数字转变为由黑到白的不等灰度的小方块。

(一)普通CT:扫描部分,计算机系统, 图像显示和存储系统

快速容积扫描,实时成像。

电子束CT (EBT),是用电子枪发射电子束轰击4个环靶产生的X线进行扫描。多层扫描,可行电影观察,对心脏大血管的内部结构包括先天性、获得性心脏病诊断十分有意义。
电子束CT是CT的一种特殊类型,于1983年首先应用于临床。X线源用电子枪发射电子束(Electron beam),射向一个环形钨靶,环形排列的探测器收集信息。故又称电子束CT,使扫描时间缩短到50毫秒,适应检查心血管的快速扫描。
EBT与常规CT的主要区别在于X线源。常规CT是用一个X线管球来发射X线,将此X球管装入扫描架,由扫描架环绕患者做机械性的往复运动来实现X线对患者的扫描;而EBT则是由电子枪发射电子束,在聚焦线圈的作用下聚集成高能的电子束,通过电子枪内的偏转线圈使电子束按照一定的方向轰击扫描床下的靶环,由靶环产生往返运动的X线,以对患者进行扫描。所以EBT的扫描速度要远远高于普通CT,使成像时间明显缩短。因而用EBT检查运动的器官(如心脏大血管等)能得到清晰的图像,实现了电影CT,带来了CT技术的一次革命。

1 .CT图象是由一定数目从黑到白不同灰度的像素按矩阵排列所构成,反映相应体素X线 吸收系数。
2.CT图象的不同灰度反映器官和组织对X线的吸收程度,可用CT值(HU)定量表示。

  1. CT图像上,各个像素所示数值是代表相应单位组织容积整体的CT值。如在像素内有两种以上横行走行的组织结构时,则不能如实地反映各个组织结构的CT值。如EMI MKI型装置。扫描用 X线束宽为 3mm,对 24cm正方形一边以1mm为间隔,测量240个点的透过X线量。这样透过相邻部分的X线束必有重叠, 所测CT值也有重叠。因此判断各个 CT值时,需经常考虑此点。

  2. 部分容积效应: 在同一扫描层面内含有两种以上不同密度横行走行而又互相重叠的物质时,则所测得的CT值不能如实反映其中任何一种物质的CT值。这种现象即为部分容积效应或称部分容积现象(partial volume phenomenon)。在诊断中,由于部分容积效应的存在,致使小于层面厚度的病变虽可显示影像,但所测CT值并不能真实反映该图像所代表的病变组织的CT值。病变组织如比周围组织密度高而其厚度小于层面厚度,则测得的CT值比实际组织的小。反之,病变组织密度比周围组织的密度低时,而其厚度小于层面厚度,则测得的CT值比实际组织的CT值高。因此,对于小的病灶CT值的评价要注意,以免误诊。

  3. 采用薄层扫描或部分重叠扫描和加大重建矩阵,可以减少部分容积效应的影响,提高图像水平和诊断质量。

  4. 由于部分容积效应的影响,层面内不同结构物体边缘如被斜行横断,则其轮廓由于CT值的不准确而显示不清。例如侧脑室侧壁,与层面内斜行走行的导水管和没有扩大的侧脑室下角轮廓显示不清就是这种原因。眼眶横断层面图像中,视神经的CT值不真实也是该原因

  1. 在一个层面内,与层面垂直两个相邻且密度不同的物体,其物体边缘部的CT值不能准确测得,结果在CT图像上,其交界的影像不能清楚分辨,这种现象为周围间隙现象(peripheral space phenomenon)这是因为扫描X线束宽,透过X线测量的间隔和像素大小之间不一致的缘故。

  2. 例如MK1型CT装置,扫描线束为3mm宽,透过X线测量间隔为1mm,而像素大小为1.5×1.5mm。结果是相邻接的测量值相互重叠。

  3. 周围间隙现象的存在,使密度不同的物体交界处,在密度高的物体边缘,其CT 值小,而在密度低的物体边缘,其CT值大。

  4. 基于上述原因,CT图像上所示某一结构或病变的形状、大小和CT值并不一定同它本身的真实情况相一致。各个像素所示CT值也不一定能准确代表相应组织容积的CT值。

  1. 窗口技术是CT检查中用以观察不同密度的正常组织或病变的一种显示技术,包括窗宽(window width)和窗位(window level)。

  2. 由于各种组织结构或病变具有不同的CT值,CT本身能够分辨约2000个甚至更多的灰阶,而人眼在上述全灰度标尺范围内,只有当两个像素的灰度相差60HU时才能分辨出它们之间的黑白差,这相当于在全灰度范围内把从全黑到全白的灰阶只分成33个级差。所以,必须有一种技术来调节人眼与灰阶显示之间的差别,这种方法在CT中被称为窗口技术或窗宽、窗位调节。欲观察某一组织结构细节时,应选择适合观察该组织或病变的窗宽和窗位,以获得最佳显示。

  3. 窗宽是CT图像上显示的CT值范围,在此CT值范围内的组织和病变均以不同的模拟灰度显示。采用窗宽技术使CT值高于此范围的组织和病变,无论高出程度有多少,均以白影显示,不再有灰度差异;反之,低于此范围的组织结构,不论低的程度有多少,均以黑影显示,也无灰度差别。这样用白或黑覆盖了不需要观察部位的CT值。增大窗宽,则图像所示CT值范围加大,显示具有不同密度的组织结构增多,但各结构之间的灰度差别减少,对比度降低,观察图像的层次相对增多。减小窗宽,则显示的组织结构减少,然而各结构之间的灰度差别增加,对比度明显增加,相应观察图像的层次减少。如观察脑质的窗宽常为-15~+85H,即密度在-15~+85H范围内的各种结构如脑质和脑脊液间隙均以不同的灰度显示。而高于+85H的组织结构如骨质及颅内钙化,其间虽有密度差,但均以白影显示,无灰度差别;而低于-15H组织结构如皮下脂肪及乳突内气体均以黑影显示,其间也无灰度差别。

  4. 窗位是窗的中心位置,可以理解为打开不同窗宽的钥匙。采用不同的窗位,可以相应得到不同位置的窗宽。同样的窗宽,由于窗位不同,其中所包括CT值范围的CT值也有差异。例如窗宽同为100H,当窗位为O Hu 时,其CT值范围为-50~+50H; 如窗位为+35H时,则CT值范围为-15~+85H。通常,欲观察某一组织结构及发生的病变,应以该组织的CT值为窗位。例如脑质CT值约为+35H,则观察脑组织及其病变时,选择窗位以十35H为妥。

  5. 由上可见,同一CT扫描层面,由于选择不同的窗宽和窗位可获得各种观察不同组织结构的灰阶图像。例如同一CT扫描层面用两个不同窗技术所取得的两幅颅脑图像。当选择窗宽100H、窗位为十35H时,脑质结构及其病变显示最佳,而骨质变化显示不清。但提高窗位为+300H,窗宽为800H时,则可清楚显示出颅壁的骨质破坏和增生,而脑质结构及其病变显示不佳。因此,为显示欲观察的组织及其病变,应在CT操作台上选择适当的窗宽与窗位,并用多幅照相机加以记录。一旦摄成胶片,图像的灰度即不能改变。

二 高分辨力CT扫描(HRCT)
提高空间分辨率,显示微小的组织结构。

表面再现: 最大强度投影:
容积再现:使表面与深部结构同时立体再现。

2.彷真内镜显示技术:是计算机技术.可以显示所有管腔器官。

  1. 将多个连续的平面断层图像组成三维模型,再将模型沿冠状面、矢状面或者任意斜面甚至曲面断开,并形成的新的断层图像。

  2. 这个新的断层图像与标准的水平断层图像一样,也是由不同的像素组成的,不同的是原始图像的不同断层之间的距离决定了这个新断层的像素大小,也就是空间分辩率。所以,原始断层的纵向距离越小,MPR图像的空间分辨率越高。如果原始图像的纵向距离过大,再MPR断层上就会出现阶梯状伪影。如果原始图像的纵向分辩率与水平分辩率相同,即图像里的每个体素的三维大小相同,我们称这样的体素为各向同性(Isotopic)。由这样的数据形成的MPR断层在任何方向上都具有相同的分辩率。

  3. MPR图像是二维图像、从不同角度反映目标的解剖关系,而且保留了像素的CT值信息,可以进行密度测量。

  4. 曲面的MPR图像可以了解复杂目标的解剖结构。其缺点是没有直接展示三维模型,因此不能直接进行三维测量。

  1. 收集全部体素,并给特定CT值体素赋予相应的颜色、亮度、对比度和透明度。并把相应结果映射到显示平面上。人为改变体素的亮度和对比度,可以在不失真的情况下改变组织与周围的对比度,突出目标的形态。通过不同的颜色可以更好的区分不同的组织和器官。通过改变透明度可以更形象地显示不同组织和器官的三维相互关系。

  2. 容积渲染方法保留了全部原始的断层数据,使目标的三维现实层次更丰富,形态准确逼真,不仅可见显示与周围有较高对比度的增强血管、骨组织和空气组织,而且对于对比度不高的软组织器官之间的关系有很好的显示,这种方法也适合于展示复杂组织或器官之间的关系,如肿瘤对周围组织的侵犯等。但是,也正是由于容积现实采用了全部数据,没有给特定目标确定表面界限,使得三维的距离、角度和容积的测量无法实现;同时,复杂结构的显示也增加了因不同组织或器官之间相互遮盖而产生的错误判断;另外,容积渲染方法使用实际体素作为显示的基本构成要素,如果体素不具有各向同性,则不同角度观察到的图像质量就会有显著差别

  1. 在三维的数据库中,根据密度变化的比率,提取与周围密度对比最大(最小)的部分构建实体的三维模型,投影到显示屏的结果。

  2. 如:造影剂和骨组织与周围密度明显高于周围,使用最大密度投影可以自动提取上述目标加以显示。同样,如果要观察气体或脂肪组织等比周围密度低的目标,就可以使用最小密度投影方法。

  3. 优点:通过计算机自动提取模型,使目标的形态准确,失真小,可信度高。通过使三维目标简化,突出目标与周围的对比,使目标的三维关系显示清楚。

  4. 缺点:对于与周围对比度不高的实体目标,如脑、腹部器官等,很难提取准确的影像;另外,由于这种方法一般仅使用灰度对比,对于微小病变有时会受周围物体遮盖而被忽略;而且这种方法在显示相对简单的三维关系时比较可靠,对于复杂的关系,由于相互遮盖,很难做出准确的判断。

  5. 最大(最小)密度投影方法主要应用于增强CT的血管显示,富血供肿瘤和含气结构的显示。(7)表面覆盖成像(Surface shaded display SSD

  6. 将连续平面图像形成的三维模型,以不同CT值或CT值范围为界限形成多组界面,并以光照和投影的方式,显示不同界面之间的关系。

  7. 优点:目标的三维关系明确清晰,不易混淆。各个组织和器官都有确切的边界,容易进行三维关系的测量,如不同目标之间距离的测量,角度的测量及病变或器官容积的测量等。

  8. 缺点是在大量的原始数据中仅保存了简单的界面关系,而内部信息丢失,无法进行内部结构的进一步分析。同时由于器官的界面是由人为规定的CT值或范围确定的,造成明显失真,不能反映形态复杂器官的实际情况,形态受主观影像较大,因此可重复性差。

  1. 是一种三维显示技术,并不是一种三维重建的方法,普通的显示方式是把不同方法建立的三维模型旋转并投射到显示平面上进行观察,而虚拟内窥镜方法则是将视点沿一定线路进入三维模型内部飞行(Fly through),将内部结构的投影显示在平面上。

  2. 虚拟内窥镜可以象普通纤维内窥镜那样沿空腔脏器(如肠道、气管)内部飞行,也可以沿着具有固定边界的非空腔脏器(如血管、输尿管、骨骼围成的腔隙)内部飞行。

  3. 优点:有利于了解目标的走形及内部有无狭窄或隆起、凹陷性病变。虚拟内窥镜的三维模型可以用表面遮盖方法建立,也可以用容积渲染方法建立,前者的优点是管腔具有明确的边界,计算机可以自动计算飞行路线,三维关系也比较清楚。

  4. 缺点:受主观控制边界,失真较大,很少用作精确的测量诊断。

  5. 对于1cm以上的病变,虚拟内窥镜与纤维内窥镜的检出率相似。

多时相扫描 三维血管重建 脑灌注成像 图像融合技术

三维重建技术,可以从任意角度观察病变和组织结构。既可以透视,也可显示表面结构和深层架构及其关系。在脑血管病变成像中,可以观察动脉瘤和载瘤动脉的关系;肿瘤的富血管程度和周围血管的关系,观察颅骨结构的同时显示颅内血管。

  1. 除了显示大血管外,CT还可以显示毛细血管染色情况,即CT灌注成像。脑的CT灌注成像功能已开发了数年,目前高档CT均可配置有CT灌注成像软件。随多层CT扫描速度的提高,现有的时间分辨力已允许行多层面CT灌注成像,从而允许在一次注射对比剂后得到多层面的、更细节的灌注信息。

  2. CT灌注成像主要是通过团注造影剂,观察脑组织结构密度随时间变化的趋势,绘制时间--密度值曲线。通过该曲线计算PT,MTT,rCBV和rCBF等指标来观察毛细血管内的造影剂浓度的变化,通过这些变化评价病变。

  3. 峰值时间(PT),造影剂从开始增强到脑组织密度最大时需要的时间。

  4. 平均通过时间(MTT),造影剂全部通过脑组织所需要的时间。

  5. 局部脑血容量(rCBV),时间--密度曲线下方封闭的面积。

  6. CT灌注成像优于MR灌注成像在于相对简单易行,且适于急诊检查。从临床角度来讲,在早期脑缺血病人中,常规CT主要用于显示脑内是否出些血肿,如果没有血肿,则按照脑缺血进行治疗,但常规CT在缺血发作12小时之内并不能直接显示脑缺血的部位和范围。CT灌注成像可以显示缺血区域灌注不足,对脑缺血早期诊断非常有意义。

  1. 一种“可变速扫描”技术可根据不同的心率选择不同的扫描时间,以克服心律不齐或心率大于80次/分或低于60次/分时常规门控技术不足以保证图像质量的问题,可明显改善冠状动脉及心脏形态学的显示。由于是无创伤性检查,病人更容易接受,可用于体检或筛查。

  2. 基于多层螺旋CT时间分辨力的进一步提高(80ms/8层设计;250ms/4层设计),新的心脏成像功能有心肌灌注成像、动态心脏功能成像、快速(3-5分钟)冠状动脉钙化与软斑块分析及冠状动脉内腔镜等。多层CT进行冠状动脉钙化积分与电子束CT(EBCT)的符合率已可达96%-98%。

  3. 对冠状动脉及其分支钙化进行定量的诊断,判断冠心病程度和预后。

曲线重建,使冠脉显示在同一个平面上,观察冠脉的狭窄、管腔不规则和钙化。

  1. 是近几年国外学者应用的最新技术,它能准确地定量测量在呼吸过程中肺内感兴趣区CT值的快速变化过程,对诊断阻塞性气道病变所致的通气障碍价值较大。正常肺组织显示平滑、类正弦的PDD曲线,并具有最大振幅的肺兴趣区变化(MALAC),而阻塞性气道异常的肺组织则显示不规则、异步的PDD曲线,MALAC明显减小。

  2. 部分严重病例PDD曲线接近平直。肺动态密度测量检测阻塞性气道改变比常规CT扫描的直观评价更敏感和准确,它能着重发现小和终末气道的早期和轻度地病理变化而致的气道障碍,帮助鉴别阻塞性和代偿性肺气肿。能确定肺实质损害或气道病变引起的气道的障碍程度,并对治疗后的效果做出评价。

  1. 是一种不受狭窄的腔道限制的无创性检查。对于严重狭窄甚至阻塞的腔道,仿真内窥镜优于纤维支气管镜。但仿真内窥镜也存在失真和误差, 尤其是在靶器官与周围组织的密度差较小时误差更大。它不宜作为单独的影像手段进行诊断, 应结合临床和断层图像进行评价。

  1. 已有厂家设计了薄层低剂量的CT扫描方式,可作高危人群的筛选普查。以CT作肺癌普查的可行性已不再是技术问题,而是卫生经济方面的问题。另外优于其低剂量的优势,其在儿科放射学中的应用也受到广泛重视。此外,类似的技术还被用于结肠疾病的筛查。

  1. 与脑灌注成像原理相似,以彩色方式显示肺毛细血管床灌注情况,从而间接反映肺功能状况的成像方式。该方法尚处于初步开发阶段,初步结果表明,在指导手术(如支气管扩张切除术)、明确手术范围等方面具有肯定的价值,其他价值还待开发。

  1. 薄层扫描,高分辨率影像,利于观察细微解剖结构的变化。

  2. MPR和3D重建多方位、多角度显示骨、关节的复杂解剖结构。

  3. 一次完成急诊患者的全身骨骼扫描。

  1. 肝胆系统:多时相动态增强,血管三维重建,胆道造影三维重建。

  2. 消化道:MPR、3D重建,仿真内窥镜。

肾功能灌注:肾动脉狭窄 肾小球过滤率 肾移植后的存活

弛豫是指磁化矢量恢复到平衡态的过程,磁化矢量越大,MRI探测到的信号越强

是指90度射频脉冲停止后纵向磁化逐渐恢复至平衡的过程,其快慢用时间常数T1表示。

T1:纵向磁化矢量从最小恢复至平衡状态63%所需时间

不同组织T1时间不同,其纵向弛豫率不同,MR信号不同,故它们在图像上表现为灰结的差异 如: 蛋白质、水:T1长; 脂肪:T1短

是指射频脉冲停止后,质子又恢复到原来各自相位上的过程,这种横向磁化逐渐衰减的过程称之为T2弛豫。

T2为横向弛豫时间常数,它等于横向磁化由最大值衰减到至37%所经历的时间,它是衡量组织横向磁化衰减快慢的一个尺度。

T2是一个具有组织特异性的时间常数,不同组织以及正常组织与病理组织有着不同的T2值。

T1:纵向磁化矢量从最小恢复至平衡状态63%所需时间

T2:为横向弛豫时间常数,它等于横向磁化由最大值衰减到至37%所经历的时间,它是衡量组织横向磁化衰减快慢的一个尺度。T2是一个具有组织特异性的时间常数,不同组织以及正常组织有着不同的T2值

主磁体(永磁 常导 超导),梯度线圈
射频发射器,MR信号接受器(负责MR信号产生,探测,编码) 模拟转换器,计算机,磁盘与磁带机(负责数据处理,图象重建,显示,存储)

质子弛豫增强效应与对比增强:

MRI不足:钙化灶(显示不敏感) 骨变化(显示不清楚)伪影(MRI伪影,运动,金属异物)

七 MRI检查应注意的问题
体内金属(弹片,人工关节,术后金属夹,起搏器)
高热或散热功能障碍,孕妇慎用。

  1. 矢状面SE T1WI 有利于中线结构的显示

  2. 冠状面SE T1WI或FSE T2WI 有助于病变定位、颅底及颅顶部病变显示

  1. 横断面FSE FLAIR序列:抑制脑脊液(CSF)的信号,有助于显示被CSF掩盖的病变,如皮层、脑室或脑内病变

  2. 横断面DWI(常用SS-SE-EPI)序列:显示早期脑梗死

  3. 增强扫描应用SE T1WI横断面冠状面矢状面

  1. 增强扫描 矢状面或冠状面SE T1WI

  1. 增强扫描:横断面、冠状面或矢状面SE T1WI

  1. 横断面、矢状面、斜面SE T1WI扰相GRE T1WI,真稳态-快速成像(True-FISP),同时施加心脏门控技术

  1. 动态增强:同肝脏,但动脉期比肝延时5~8s

  1. 横断面、冠状面、矢状面同肝脏

不同关节的扫描断面不完全一致,但常规扫描序列为:SE T1WI,FSE T2WI,PDWI

  1. 半月板和关节软骨:冠状面、矢状面SE T1WI,PDWI,关节软骨扰相GRE T1WI,纤维软骨扰相GRE T2WI

2、肩关节:轴斜冠状、斜矢状、横断面SE T1WI,扰相GRE T2WI

  1. 消除伪影,提高对比,增加病灶检出,提高鉴别诊断

  2. 频率选择抑脂饱和法,适用于中场强,可和SE T1WI,FSE T2WI同时应用

  1. 实际应用中应该同时采集同像位和反相位图像,以便进行比较。

  2. 同像位图像,即扰相GRE T1WI。

  3. 反相位图像,即扰相GRE T1WI+双回波。

  4. 临床:反相位图像优点,对水脂混合信号,既抑制脂肪信号,又抑制水信号,利于鉴别诊断。

  5. 勾边效应:利于脏器解剖结构的显示。如肾上腺疾病的鉴别;脂肪肝的诊断鉴别;局部脂肪肝的诊断;肾脏血管平滑肌脂肪瘤的鉴别。

  1. 临床:脑部血管、颈部血管、下肢血管

  1. 临床:应用慢血流显示,如静脉病变、脑动脉瘤显示,心脏血流分析,门静脉血流分析,肾动脉病变和TOF-MRA结合应用。

  1. 需用对比剂,低场强可开展3D扰相GRE T1WI

  2. 临床:和TOF-MRA配合应用,大中血管显示好。脑及颈部血管狭窄、闭塞,动脉瘤,血管畸形,肺动脉栓塞,肺动静脉漏,主动脉瘤,主动脉夹层,主动脉畸形,肾动脉狭窄,肠系膜血管狭窄或血栓,门静脉畸形,四肢血管狭窄,动脉瘤,血栓性脉管炎,血管畸形。

  1. 目前主要用于脑急性和超急性脑梗死

  2. 扩散张量成像(DTI)脑白质束的显示

  1. 弥散是指分子的不规则随机运动, 用于描述分子等粒子由高浓度向低浓度扩散的微观运动,即布朗运动,单位为mm2/ s。

  2. DWI是利用体内水分子的随机运动特性进行成像的,主要显示细胞外水分子的弥散

  3. 弥散成像的物理基础:在非均匀磁场中,组织中的水分子弥散导致质子自旋失相位,使回波信号的幅度减小,所采集的信号降低 。反之,如果水分子的弥散受到限制,则很少失相位,因此信号较高。

  4. 在一种场强中随机运动的质子一到另一场强中,其进动频率就要改变,而且随着时间的推移,它所积累的相位也会变,这就是回波信号减小的原因。DWI即利用这一点,通过施加弥散敏感梯度,突出体素内因弥散而导致的失相位,从而在DWI图像中,显示组织中弥散强度的不同。

  5. 磁共振扩散张量成像(diffusion tensor imaging , DTI) 是利用水分子的扩散运动各向异性进行成像,反映活体组织空间组成信息及病理状态下各组织成分之间水分子交换功能状况的检查方法。扩散张量成像是近年来发展的一种新的MR 技术,它利用水分子在组织中扩散的特性来成像。水分子在均匀的介质中向各个方向扩散的程度相同,而在人体组织中水分子的扩散受到其他大分子、细胞膜、细胞壁等的限制,造成各个方向的扩散速率不同。在脑白质中,一般沿着纤维走向的水分子扩散速率快,垂直于纤维方向的速率慢。

扩散张量成像技术对脑白质纤维的显示 脑白质由投射纤维、联络纤维及联合纤维组成,使整个大脑成为一个功能整体,从而完成极为复杂的功能活动。

  1. 纤维束成像:将采集的扩散张量成像数据传至工作站 ,利用纤维束跟踪软件 进行处理,利用后处理软件可以清楚地显示脑FA 图、FA 彩色编码图,在FA 彩色编码图的基础上进行纤维束追踪成像。彩色编码图可以清晰显示白质纤维分布情况, (红色代表左右走行纤维,绿色代表前后走行纤维,蓝色代表上下走行纤维) 。

  2. 在FA 彩色编码图的基础上选择恰当的感兴趣区,各向异性阈值、角度阈值、步长和体素内采样数目等参数,确定种子区后进行纤维束成像,利用纤维束跟踪软件包来进行处理,经张量域线性内插建立一个连续张量域,然后自一个种子点开始在最大本征向量方向上向前、后方向各延伸一个步长,计算步长末端的最大本征向量,沿新方向再延伸一个步长,多次重复步骤直至符合终止条件。

  3. 利用扩散张量纤维跟踪技术清楚地模拟显示了脑内主要白质如皮质脊髓束、皮质核束、胼胝体、扣带、上纵束、下纵束、上枕额束、下枕额束、钩束等的走行及起止。

  1. (2)、心肌灌注 心肌缺血

  1. (5)、软组织肿瘤PWI

  1. 脑肿瘤代谢性疾病,脑肿瘤治疗后复发与肉芽组织的鉴别,脑缺血疾病,前列腺癌,弥漫性肝病,肾功能分析和肾移植的排斥反应。

是利用不同组织之间的磁敏感性和相位信息差异, 通过复杂的数据采集和处理, 进一步增加局部组织对比的一种新的梯度回波技术。

SW I是包含相位图像和幅度图像的三维、高分辨、完全流动补偿的梯度回波序列,对静脉结构和血液代谢物十分敏感。是一项可以反映组织磁化属性的新的对比度增强技术,提供了T1W I、T2W I及扩散程度之外的另一种对比度。

SW I的原理:由于脱氧血红蛋白是静脉系统的天然对比剂。它使T2时间缩短。脱氧红细胞与血浆、静脉与周围脑实质通过选择合适的TE值,利用周围容积效应,使得磁敏感性的周围容积效应最大化,从而能够显示微小的静脉 。SW I常用的重建方法是最小信号强度重建(Min IP) 。应用Min IP重建的图像,可立体地显示静脉血管的任意方位,并可根据需要任意调整角度进行观察。也可采用亚容积局部重建,只建所需的血管,可排除不相干的血管的干扰。

  1. fMRI采用平均血氧水平依赖fMRI技术,应用单次激发平面回波成像,梯度回波技术(GRE-EPI)

章 不同成像诊断的综合应用
相互关系:各有优势与不足,相互补充和印证,不能完全取代。
选用原则:简单,安全,无创(或微创),经济。

1.全面观察:摄影位置,条件,照片质量。按顺序,全面系观察。
2.重点分析:(1)病变的位置和分布,(2)数目,(3)形状, (4)边缘, (5)密度, (6)临近器官和组织的改变,(7)器官功能的改变。
3.结合临床:病史,体征,治疗经过。年龄、性别、职业史和接触史、生长和居住地区、实验室和病理检查。
4.作出诊断:肯定性诊断;否定性诊断;可能性诊断。

包括放射科工作的管理,质量控制(QC),质量保证(QA),影象信息的存档与传输,远程放射学。以放射学信息系统(radiology information system,RIS),PACS和互连网络为基础。

我要回帖

更多关于 头颅mri解剖结构 的文章

 

随机推荐