已知∠aob=30°m为ob上一点,以m为圆心,2㎝为半径作⊙m与oa与x轴相切 圆心在直线,切点为n则三

当前位置:
>>>已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足.MP-.MN=..
已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足.MP-.MN=|.PN|-|.MN|.(I)求动点P的轨迹C的方程;(II)若A、B是轨迹C上的两不同动点,且.AN=λ.NB.分别以A、B为切点作轨迹C的切线,设其交点Q,证明.NQ-.AB为定值.
题型:解答题难度:中档来源:不详
(I)设P(x,y).由已知 MP=(x,y+2),MN=(0,4),PN=(-x,2-y),MPoMN=4y+8.|PN|o|MN|=4x2+(y-2)2(3分)∵MPoMN=|PN|o|MN|∴4y+8=4x2+(y-2)2整理,得x2=8y即动点P的轨迹C为抛物线,其方程为x2=8y.(6分)(II)由已知N(0,2).即得(-x1,2-y1)=λ(x2,y2-2)
2-y1=λ(y2-2)
设A(x1,y1),B(x2,y2).由AN=λNB即得(-x1,2-y1)=λ(x2,y2-2),∴-x1=λx2…(1),2-y1=λ(y2-2)…(2)将(1)式两边平方并把x12=8y1,x22=8y2代入得y1=λy2(3分)解得 y1=2λ,y2=2λ,且有x1x2=-λx22=-8λy2=-16.(8分)抛物线方程为 y=18x2,求导得y′=14x.所以过抛物线上A、B两点的切线方程分别是&y=14x1(x-x1)+y1,y=14x2(x-x2)+y2,即y=14x1x-18x12,y=14x2x-18x22解出两条切线的交点Q的坐标为 (x1+x22,x1x28)=(x1+x22,-2)(11分)所以 NQoAB=(x1+x22,-4)o(x2-x1,y1-y2)=12(x22-x12)-4(18x22-18x12)=0所以 .NQo.AB为定值,其值为0.(13分)
马上分享给同学
据魔方格专家权威分析,试题“已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足.MP-.MN=..”主要考查你对&&平面向量的应用,直线与抛物线的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
平面向量的应用直线与抛物线的应用
平面向量在几何、物理中的应用
1、向量在平面几何中的应用:(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;(3)证明垂直问题,常用向量垂直的充要条件;1、向量在三角函数中的应用: (1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。2、向量在物理学中的应用: 由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。3、向量在解析几何中的应用:(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。 平面向量在几何、物理中的应用
1、用向量解决几何问题的步骤: (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如:距离,夹角等; (3)把运算结果“翻译”成几何关系。 2、用向量中的有关知识研究物理中的相关问题,步骤如下: (1)问题的转化,即把物理问题转化为数学问题; (2)模型的建立,即建立以向量为主题的数学模型; (3)求出数学模型的有关解; (4)将问题的答案转化为相关的物理问题。设直线l的方程为:Ax+By+C=0(A、B不同时为零),抛物线的方程为y2=2px(p>0),将直线的方程代入抛物线的方程,消去y(或x) 得到一元二次方程,进而应用根与系数的关系解题。直线与抛物线的位置关系:
直线和抛物线的位置关系,可通过直线方程与抛物线方程组成的方程组的实数解的个数来确定,同时注意过焦点的弦的一些性质,如:
发现相似题
与“已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足.MP-.MN=..”考查相似的试题有:
781504480078842748331557484907770890(2005o宜宾)如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,M是BC上一动点(不运动至B、C两点),过点M引半圆为O的切线,切点是P,过点A作AB的垂线AN,交切线MP于点N,AC与ON、MN分别交于点E、F.(1)证明:△MON是直角三角形;(2)当BM=时,求的值(结果不取近似值);(3)当BM=时(图2),判断△AEO与△CMF是否相似?如果相似,请证明;如果不相似,请说明理由.
提 示 请您之后查看试题解析 惊喜:新移动手机注册无广告查看试题解析、半价提问当前位置:
>>>已知平面上两个定点M(0,-2)、N(0,2),P为一个动点,且满足MPoM..
已知平面上两个定点M(0,-2)、N(0,2),P为一个动点,且满足MPoMN=|PN|o|MN|.(1)求动点P的轨迹C的方程;(2)若A、B是轨迹C上的两个不同动点AN=λNB.分别以A、B为切点作轨迹C的切线,设其交点为Q,证明NQoAB为定值.
题型:解答题难度:中档来源:东城区一模
(I)设P(x,y).由已知MP=(x,y+2),MN=(0,4),PN=(-x,2-y),MPoMN=4y+8.|PN|o|MN|=4x2+(y-2)2(3分)∵MPoMN=|PN|o|MN|∴4y+8=4x2+(y-2)2整理,得x2=8y即动点P的轨迹C为抛物线,其方程为x2=8y.(6分)(II)由已知N(0,2).设A(x1,y1),B(x2,y2).由AN=λNB即得(-x1,2-y1)=λ(x2,y2-2)-x1=λx22-y1=λ(y2-2)将(1)式两边平方并把x12=8y1,x22=8y2代入得y1=λ2y2(3分)解(2)、(3)式得y1=2λ,y2=2λ,且有x1x2=-λx22=-8λy2=-16.(8分)抛物线方程为y=18x2,求导得y′=14x.所以过抛物线上A、B两点的切线方程分别是y=14x1(x-x1)+y1,y=14x2(x-x2)+y2,即y=14x1x-18x21,y=14x2x-18x22解出两条切线的交点Q的坐标为(x1+x22,x1x28)=(x1+x22,-2)(11分)所以NQoAB=(x1+x22,-4)o(x2-x1,y1-y2)=12(x22-x21)-4(18x22-18x21)=0所以NQoAB为定值,其值为0.(13分)
马上分享给同学
据魔方格专家权威分析,试题“已知平面上两个定点M(0,-2)、N(0,2),P为一个动点,且满足MPoM..”主要考查你对&&动点的轨迹方程,抛物线的定义,圆锥曲线综合&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
动点的轨迹方程抛物线的定义圆锥曲线综合
&动点的轨迹方程:
&在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。求动点的轨迹方程的基本方法:
直接法、定义法、相关点法、参数法、交轨法等。 1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。 2、定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。定义法的关键是条件的转化——转化成某一基本轨迹的定义条件;3、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。 4、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。 5、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。
求轨迹方程的步骤:
(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为M(x,y);(2)写集合写出符合条件P的点M的集合{M|P(M)};(3)列式用坐标表示P(M),列出方程f(x,y)=0;(4)化简化方程f(x,y)=0为最简形式;(5)证明证明以化简后的方程的解为坐标的点都是曲线上的点,&抛物线的定义:
平面内与一个定点F和一条定直线l(F∈l)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线,抛物线的定义也可以说成是:平面内与一个定点F和一条定直线l的距离的比等于1的点的轨迹.
抛物线中的有关概念:
抛物线的规律总结:
①在抛物线的定义中的定点F不在直线l上,否则动点的轨迹就是过点F且垂直于直线l的一条直线,而不再是抛物线;②抛物线的定义中指明了抛物线上的点到焦点的距离与到准线的距离相等,故在一些问题中,二者可以互相转化,这是利用抛物线定义解题的关键.圆锥曲线的综合问题:
1、圆锥曲线的范围问题有两种常用方法: (1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部; (2)所求量可表示为另一变量的函数,求函数的值域。 2、圆锥曲线的最值、定值及过定点等难点问题。直线与圆锥曲线的位置关系:
(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.②若当Δ&0时,直线和圆锥曲线相交于不同两点,相交.当Δ=0时,直线和圆锥曲线相切于一点,相切.当Δ&0时,直线和圆锥曲线没有公共点,相离.
直线与圆锥曲线相交的弦长公式:
若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.(2)韦达定理法:不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.&
发现相似题
与“已知平面上两个定点M(0,-2)、N(0,2),P为一个动点,且满足MPoM..”考查相似的试题有:
412172624189449064568673617750617916当前位置:
>>>如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8。半径为的⊙M与射..
如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8。半径为的⊙M与射线BA相切,切点为N,且AN=3。将Rt△ABC顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E。(1)画出旋转后的Rt△ADE;(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由。
题型:解答题难度:中档来源:海南省月考题
解:(1)如图Rt△ADE就是要画的图形(2)连接MQ,过M点作MF⊥DE,垂足为F,由Rt△ABC可知,NE=1,在Rt△MFQ中,解得FQ=,故弦PQ的长度2。(3)AD与⊙M相切。证明:过点M作MH⊥AD于H,连接MN,MA,则MN⊥AE,且MN=,在Rt△AMN中,tan∠MAN==,∴∠MAN=30°,∵∠DAE=∠BAC=60°,∴∠MAD=30°,∴∠MAN=∠MAD=30°,∴MH=MN,∴AD与⊙M相切。
马上分享给同学
据魔方格专家权威分析,试题“如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8。半径为的⊙M与射..”主要考查你对&&直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离),垂直于直径的弦,圆的认识&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)垂直于直径的弦圆的认识
直线与圆的位置关系:直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。 (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d&r; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d&r。(d为圆心到直线的距离)直线与圆的三种位置关系的判定与性质: (1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定, 如果⊙O的半径为r,圆心O到直线l的距离为d,则有: 直线l与⊙O相交d&r; 直线l与⊙O相切d=r; 直线l与⊙O相离d&r; (2)公共点法:通过确定直线与圆的公共点个数来判定。 直线l与⊙O相交d&r2个公共点; 直线l与⊙O相切d=r有唯一公共点; 直线l与⊙O相离d&r无公共点 。圆的切线的判定和性质&&& (1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 (2)切线的性质定理:圆的切线垂直于经过切点的半径。 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 直线与圆的位置关系判定方法:平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程如果b2-4ac&0,则圆与直线有2交点,即圆与直线相交。如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。如果b2-4ac&0,则圆与直线有0交点,即圆与直线相离。2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2。令y=b,求出此时的两个x值x1、x2,并且规定x1&x2,那么:& 当x=-C/A&x1或x=-C/A&x2时,直线与圆相离;当x1&x=-C/A&x2时,直线与圆相交。&垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 注:(1)定理中的直径过圆心即可,可以是直径、半径、过圆心的直线或线段; (2)此定理是证明等线段、等角、垂直的主要依据,同时也为圆的有关计算提供了方法和依据。 垂径定理的推论: 推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:
一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦 (不是直径)4.垂直于弦5.经过圆心圆的定义:圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。相关定义:1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。6 由两条半径和一段弧围成的图形叫做扇形。7 由弦和它所对的一段弧围成的图形叫做弓形。8 顶点在圆心上的角叫做圆心角。9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.……在实际应用中,一般取π≈3.14。11圆周角等于相同弧所对的圆心角的一半。12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。圆的集合定义:圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。圆的字母表示:以点O为圆心的圆记作“⊙O”,读作O”。圆—⊙ ; 半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ; 直径—d ;扇形弧长—L ;&&&&&&&&&&&&&&&&&&&&&&&&&&&&周长—C ;&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 面积—S。圆的性质:(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。(2)有关圆周角和圆心角的性质和定理① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。(3)有关外接圆和内切圆的性质和定理①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。(5)弦切角的度数等于它所夹的弧的度数的一半。(6)圆内角的度数等于这个角所对的弧的度数之和的一半。(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。(8)周长相等,圆面积比长方形、正方形、三角形的面积大。点、线、圆与圆的位置关系:点和圆位置关系①P在圆O外,则 PO&r。②P在圆O上,则 PO=r。③P在圆O内,则 0≤PO&r。反过来也是如此。直线和圆位置关系①直线和圆无公共点,称相离。 AB与圆O相离,d&r。②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d&r。③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)圆和圆位置关系①无公共点,一圆在另一圆之外叫外离,在之内叫内含。②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P&R+r;外切P=R+r;内含P&R-r;内切P=R-r;相交R-r&P&R+r。圆的计算公式:1.圆的周长C=2πr=或C=πd2.圆的面积S=πr23.扇形弧长L=圆心角(弧度制)× r = n°πr/180°(n为圆心角)4.扇形面积S=nπ r2/360=Lr/2(L为扇形的弧长)5.圆的直径 d=2r6.圆锥侧面积 S=πrl(l为母线长)7.圆锥底面半径 r=n°/360°L(L为母线长)(r为底面半径)圆的方程:1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)2+(y-b)2=r2。特别地,以原点为圆心,半径为r(r&0)的圆的标准方程为x2+y2=r2。2、圆的一般方程:方程x2+y2+Dx+Ey+F=0可变形为(x+D/2)2+(y+E/2)2=(D2+E2-4F)/4.故有:①当D2+E2-4F&0时,方程表示以(-D/2,-E/2)为圆心,以(√D2+E2-4F)/2为半径的圆;②当D2+E2-4F=0时,方程表示一个点(-D/2,-E/2);③当D2+E2-4F&0时,方程不表示任何图形。3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0圆的离心率e=0,在圆上任意一点的曲率半径都是r。经过圆x2+y2=r2上一点M(a0,b0)的切线方程为 a0·x+b0·y=r2在圆(x2+y2=r2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0·x+b0·y=r2。圆的历史:&&&&& 圆形,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。&&&&&& 约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。&&&&& 会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。&&&&&& 任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。它是一个无限不循环小数,π=3.……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3..1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。 在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。现在有了电子计算机,圆周率已经算到了小数点后六十万亿位小数了。
发现相似题
与“如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8。半径为的⊙M与射..”考查相似的试题有:
213808352504200949348332211906134025

我要回帖

更多关于 相切是什么意思 的文章

 

随机推荐