钻床先钻小孔成像实验在阔大孔偏心是怎么回事

 下载
 收藏
所有文档全都可以在线免费浏览,需要的朋友请看好了是否是自己需要的文档再下载。部分文献资料来源于网络,仅供个人参考试阅,版权归原作者.
 下载此文档
正在努力加载中...
对爆扩成孔灌注极施工
下载积分:600
内容提示:
文档格式:DOCX|
浏览次数:0|
上传日期: 10:13:39|
文档星级:
该用户还上传了这些文档
对爆扩成孔灌注极施工.DOCX
官方公共微信水电站竖井开挖施工
&&& 周宁水电站位于福建省周宁县,属穆阳溪第二梯级电站,枢纽主要由坝高73.4m的碾压混凝土重力坝、长12.36km的引水隧洞以及高压竖井、压力管道、地下厂房洞室群和地面式升压开关站等主要建筑物组成。水库库容0.47亿m3,总装机容量2&12.5万kW。
&&& 电站引水高压竖井由上部调压井(EL634~EL560)和下部的竖井(EL180.75~EL560.00)组成,总高为453.25m。引水隧洞轴线高程为EL560.00,调压井设计开挖直径为8.9m;竖井设计开挖直径有5.7m和5.9m,竖井下部接高压管道下平段;鉴于竖井开挖及后续项目施工安全的需要,将引水高压竖井井壁统一增加5cm厚C20素砼作为临时支护,相应开挖断面直径增大10cm;为保证工期及施工方便在竖井中部设一竖井施工支洞,分岔进入竖井。
&&& 2、工程地质情况
&&& 竖井的主要岩石为燕山晚期侵入的钾长(晶洞)花岗岩,饱和极限抗压强度弱风化岩石为80~140mpa、微风化~新鲜岩石为100~170mpa;地下水位高程为EL523m,隧洞围岩相对不透水,岩体微风化~新鲜,岩体中高倾角65&~90&的裂隙发育,充填高岭土、铁锰质及硅质脉,宽0.5~1cm,多呈薄片状,岩体较完整.高程EL308m~EL305m有F60(NE60&NW&80&)断层通过。断层及破碎带岩体为Ⅲ~Ⅳ类岩体。在EL488m、、EL425m、EL409m~EL405m等风化夹层,倾角55&~75&,宽1~3cm、岩体破碎,有夹层处围岩为Ⅳ类。EL382m处有一细粒花岗斑岩脉通过、倾角20&~40&,宽80cm,与围岩接触较好。EL223m处有一辉绿岩脉通过,倾角35&宽50cm,与围岩接触较好,除有夹层和断层破碎带通过的竖井段外,其它竖井段围岩中等~完整,属ⅠⅡ类围岩,属中等地应力地区。
&&& 二、施工重点、难点和安全因素分析
&&& 根据引水高压竖井结构特点、岩石及地质情况,结合本工程主体建筑物的布置与结构型式,类似工程的施工经验,目前竖井施工的施工机械,重点从以下几个方面与常用的施工方法进行比较,再确定总体施工方法。
&&& 1、深井通风与除尘问题
&&& 通风与除尘是排除炮烟粉尘及有害气体,改善施工环境,保障施工人员身体健康,缩短循环时间,加快施工速度的重要工序。目前,隧洞通风主要以机械通风为主。但对于高达453.25m深井的通风与除尘问题将面临着极大的困难。因此施工中选择一种尽量使用自然风与机械通风来进行通风与除尘以改善施工环境的施工方法是必不可少的考虑因素。
&&& 2、深井施工的安全问题
&&& 安全是每个职工的生命,因此每个工程队伍都必须将&施工安全&放在首要位置。但在目前的开挖施工中常用的机械设备是手风钻,工作人员必须进入工作面打眼放炮,受有害气体、塌方、落石、淋水的危害,安全很难保证,伤亡事故经常发生。尤其是对较深井更是难以保证施工的安全。因此,选择一种能保证施工安全的先进设备是很有必要的。
&&& 3、深井施工的交通和设备配置
&&& 周宁水电站引水高压竖井在同一个投影面上,工作面狭窄,如何合理的设置施工通道和配置设备是加快施工进度,缩短建井周期,增强效益的关键。
&&& 4、进度分析
&&& 根据本工程的工期要求及施工特点,引水隧洞、高压竖井、高压管道下平段的施工工期为日开工至日支洞封堵结束,具备充水调试条件。总工期为(19个月零17天),高压竖井的开挖施工工期只能为8个月;后来业主要求将工期提前3个月,相应的竖井开挖工期缩短,因此,要满足进度要求,必须采取合理的施工方法。
&&& 5、技术经济效果
&&& 作为施工企业,经济效益是首先考虑的前题。较优的施工方案应当是辅助工程量小,设备简单、施工安全、施工速度快。在深井的反井施工中有普通法掘进反井法、吊罐反井法、爬罐法掘进反井法及反井钻井法;普通法掘井反井法虽然有辅助工程量小,与其它作业相互影响小,不需要大型提绞设备等的优点,但是工作人员爬梯子上下困难、劳动强度大、材料运输不方便、坑木消耗量大、通风条件差、工作面易聚有害气体、在地质和水文地质条件较差时影响作业的安全。尤其在较高竖井施工中更为困难;吊罐反井法与普通法比较有工效高、速度快、劳动强度较低、施工经济等优点,但它事先需要钻机打精度较高的绳眼,前期准备时间较长、通风条件差、工作面易聚有害气体,影响作业和安全,随着掘井深度的延深,辅助时间加长,施工速度明显减慢。难以保证施工安全及进度;爬罐反井法与吊罐反井法比较类似,具有工效高、速度快、劳动强度低的优点,但是设备投资较大,通风条件差,工作面易聚有害气体,影响作业和安全,随着掘井深度的延深,辅助时间较长,施工速度明显减慢。反井钻井法较普通法和吊罐法的设备投入大,施工成本相对较高,但反井钻井法有工作效率高、施工安全、劳动强度低、工程质量好,因此钻机的高可靠性和安全性仍能保证在恶劣地质条件下以及深孔反井施工的经济性和高效性。
&&& 三、施工总体方案的确定
&&& 1、各常用施工方法的对比及与后续工作的关系
&&& 深井按施工方式可分为两大类,即人们所说的正井法和反井法。正井法是自上而下凿井,最常用的办法是采用人工或机械打眼放炮,人工装岩或抓斗抓岩,吊桶出碴,对于特殊地层也可以使用特殊方法,包括钻井法、冻结法、帷幕法和注浆法等,有时几种方法同时使用。反井法是自下而上凿井,其施工方法有普通法、吊罐法、爬罐法和钻井法。采用反井法施工导井,利用导井的通风、排水和溜矸(排渣)等作用;利用反井法施工深井较正井法施工导井设备投入少、速度快、综合经济效益高。
&&& 2、施工方法确定
&&& 为了保证施工的安全和进度,选用分段平行立体作业施工方法。根据结构和通道施工分段如下:
引水高压竖井分段参数表&&&&&&&&&&&&&&&&&&&&&&&表1
EL557.00m~EL634.00m
EL369.00m~EL557.00m
EL180.75m~EL353.00m
EL353.00m~EL369.00m
&&& 2.1 开挖施工方案
&&& 施工过程中各段各工序交叉施工以加快总体进度,采用分段反井钻机进行导井施工、正井扩挖和支护同步完成的施工方法。施工顺序为:
竖井总体施工顺序安排;
&&& 四、主要施工技术难点及措施
&&& 4.1、分段平行立体作业施工技术
&&& 高压引水竖井成900角直立形,工作面狭窄,如何合理分段进行立体平行作业法施工是加快施工进度的关键。根据竖井的结构特点,原设计有三个通道,为了保证工期,经专家咨询,增加一个施工支洞,分两个洞口进入竖井,共形成五个通道。
&&& 开挖期,Ⅲ段与Ⅰ段同步施工,Ⅲ段与Ⅱ段同步施工,以岩塞段进行分隔,Ⅱ段导孔井施工与上游闸门井同步施工进行分隔。
&&& 开挖与砼交叉期,Ⅰ段砼与Ⅱ段开挖同步,Ⅱ段开挖与Ⅲ段砼同步,Ⅱ段开挖完成,Ⅲ段砼完成后进行岩塞段开挖采用从竖井旁洞出渣。
&&& 4.2、井内交通运输系统及安全系统
&&& 较深竖井主要解决的是人员的上下交通、材料运输及安全通道问题。
&&& 人员和材料运输设置一个无轨吊篮,在吊蓝两侧设一稳定钢绳,钢绳下部设配重(500KG),设专用卷扬机,在吊蓝上设捕绳器(bf-111型),并从煤矿行业引进先进技术,在上井架上设缓冲器,以解决瞬间制动后人员材料的缓冲击。
&&& 在井的一侧设置安全爬梯。每24m设置一个休息平台,每12m设一个休息防护罩。并每24m作一个交错。交错上方设置防护顶,作为紧急安全通道。
&&& 安全系统主要是设备的安全和控制、信号系统,主要设备安全是卷扬机的运行速度(4~8m/h),制动系统为自动和手动结合。
&&& 控制信号为电铃和灯光两个并联,安排专人管理,控制线与吊篮同步下井,由井内人员控制信号,井口值班人员操作,信号为井内外双向互动,控制电压为36V,并在钢绳上设到位标志。各工作面间的通讯连接采用内部自动电话。
&&& 4.3、反井钻机施工技术:
&&& 高压引水竖井属于较深的深井,施工难点主要是导井的施工,经过安全、技术、进度及经济比较100m以上竖井选型采用LM-200型反井钻机。主要技术参数如表2&
&&&&&&&&&&&&LM-200型反井钻机主要技术参数&&&&&&&&&&&&表2
导孔直径/mm
扩孔直径/m
推/拉力/kN
外形尺寸长&宽&高/m
3.2&1.7&3.4
&&& 使用反井钻施工,先导孔的质量是整个竖井成型的关键,所以反导井施工的关键是如何解决先导孔偏差问题,由于周宁水电站竖井岩体为高倾角80&,倾向与引水洞轴呈30&,在竖井Ⅲ段第一次先导孔施工中,偏差>2%,而设计要求的先导孔偏差&1%,因此作为废孔。分析主要有不良地质段,层间软弱地质带出现,抗压强度差别大,是造成偏差的一个原因;安装精度,开孔段和不良地质段的造孔速度是另一个原因;合理加设稳定钻杆,合理控制钻进速度是第三原因,根据第一次钻孔的偏差情况,第二次钻孔时向倾向方人为移动700mm。成孔后,偏差为1.1%,由于有人为移动,达到设计要求,Ⅰ段与Ⅱ段岩性相对均一,一次施工精度达到设计要求。
&&& 主要采取的纠偏措施为:安装钻机精度控制在0.15%以内;先导孔施工时,孔口30m,用1~3m/天的钻进速度;钻杆前30m增加稳定钻杆数量,前5m各一根,之后3:1到5:1最后到10:1;合理采用钻压和转速,并在开孔时采用扶正器等方法,施工参数见下表3。
&&&&&&&&&&&&&&&&&&反井钻机主要施工参数&&&&&&&&&&&&&&&&表3
钻进位置或岩石情况
预计转速(m/h)
钻透到下水平前
&&& 五、扩大开挖支护施工
&&& 各段的反导井施工结束后,结合竖井的结构和反井钻导井尺寸,根据以往的经验,并通过爆破试验,&6.0m井采用导井从&1.4m先进行一次刷井,扩大到&2.5m,再进行全断面扩挖和支护。全断面一次从&1.4刷大到设计断面。各段竖井的扩挖顺序如下:爆破试验参数表如表4:
各段竖井的扩挖工序:
&&& 5.1、工序说明:
&&& 5.1.1、测量控制:
&&& 溜渣导井扩挖规格线控制:从洞外控制网经测量导线引控制点到井口附近,在井口处搭设一过竖井中心的工字钢支架,在支架的中心固定一个能垂直升降的垂球,以较正竖井中心线用,由于是中导洞,开挖规格要求不高,不再进行精确放线。
&&& 设计轮廓扩挖规格线控制:从洞外控制网经测量导线引控制点到井口附近,竖井井口15m以上扩挖井口井架未安装前,制作垂直移动控制点,用垂球把控制点引在开挖掌子面放线。井口15m以下扩挖待井口井架安装到位后,把井口控制点引到井架上,在井架上做好激光准直仪支座,再把激光准直仪固定在支座上,进行校核合格后再用激光束导向,井下用钢尺放样,并定期检查准直仪的精度,同时检查上一排炮的超欠挖情况。
&&& 5.1.2、钻孔:扩挖均采用人工手风钻钻孔。
&&& 5.1.3、装药与起爆:将火工材料用吊笼运到工作面,人工装药联线,孔内用秒延时非电雷管,孔外用火雷管引爆非电,用36V电线带电炉丝缠在导火索上在孔口点火。
5.1.4、出渣:人工将工作面松渣全部扒下导井后,盖好下料导井井盖,才能出渣,用装载机配合自卸车在下部施工支洞出渣。
5.2、爆破设计:
因竖井I段、II段、III段施工顺序及方法各有差异,现分别给予说明:
5.2.1、竖井I段扩挖
竖井I段总高71米,开挖直径为8.9米,反井钻形成的导孔中心与I段中心向下游侧偏心1.55米,根据以往工程的经验,进行扩挖爆破试验,井口以下20M范围内为爆破试验段,因爆破试验段围岩稳定性的实际情况不定,在该段的施工中只能暂按设计提供的围岩类别结合施工规范及相关的施工经验进行试验性的开挖施工,以尽可能的减少对围岩不必要的振动影响,同时不发生导井堵塞现象为标准,不断调整爆破参数。
第一排炮先直接利用&1.4m导井作为溜渣通道,进行全断面扩挖,布孔间排距为60~75cm,用秒延时非电雷管引爆,放炮后,导井被堵,经放炮震动仍未能贯通,用反铲扒开后发现,堵塞导孔的石渣块径为45~55cm之间,3~4块相互交叉,分析有以下几点原因:溜渣导井偏小;导孔偏心对溜渣影响较大;分段延时不够长,单响爆破方量较大。
经过总结后,决定采用先将&1.4m导井进行一次刷井,扩大到&3m,再进行全断面扩挖和支护,扩大导孔后扩孔深可达3.5~4.5m,孔排距可放大到0.8m~1.0m,周边扩挖经试爆两排炮后,最终爆破效果达到95%以上,周边光面爆破质量很好,结合安全及进度综合考虑,最后确定竖井I段扩挖单循环为4.0米,爆破参数如下表。
在导井刷井时每次下井前须清除井壁浮碴,并在下井前用水冲井壁防止岩爆等情况出现。
竖井I 段爆破参数表
单孔药量(kg)
段装药量(kg)
全断面扩挖
爆破效率为95%,扩挖方量为:235.9M3
单耗:0.953kg/m3
5.2.2、竖井III段扩挖:
竖井III段总高166米,
扩挖直径为5.7米,因考虑
III段整体地质情况较好,同
样采用先扩大&1.4导孔为
&2.5,再全断面扩挖的方
法,经试验后,确定单循
环孔深为3.0米,布孔
图见如右图所示。
III段钻爆参数表:
单孔药量(kg)
段装药量(kg)
爆破效率为95%,总扩挖方量:68.34 m3
单耗:1.10kg/m3
5.2.3、竖井II段扩挖
竖井II段总高177米,
开挖直径为5.9米,扩挖时
直接利用反导井孔,不再扩
大溜渣孔,直接全断面一次
钻爆的方式开挖,为保证爆
破粒径达到0.25D的要求,
(D为导孔直径),减少导孔
堵塞的可能性,孔深不得大
于2.0m,为加快施工进度,
施工中经过多次试验调整,
确定单循环孔深为2.5米,
布孔图如右图所示。
竖井II段爆破参数表
单孔药量(kg)
段装药量(kg)
全断面扩挖
爆破效率为90%,总扩挖量:58.05m3
单耗:1.38kg/m3
5.2.4、竖井各段完成时间情况:
竖井各段最终完成时段表:
竖井III 段
总扩挖天数
&&& 5.3、临时支护
&&& 5.3.1 导孔扩挖时,一般情况下不作支护,必要时采用短锚杆支护;
&&& 5.3.2全断面扩挖,根据开挖出露地质情况,确定2~3个单元开挖后再进行支护。根据不同类别的围岩,支护参数各不相同,Ⅲ类、Ⅲ-Ⅳ类围岩,井壁采用Ф25,L=300cm锚杆及素喷C30厚10cm相结合的方法;若遇Ⅴ类围岩将加长锚杆到400cm,再挂钢筋网喷C30砼15cm的方法,以确保施工安全。
&&& 锚杆施工采用手风钻造孔,普通水泥砂浆袋加早强剂注浆,人工安装锚杆。
&&& 喷砼采用干喷法施工,上部80m采用喷射管入井,下部采用把喷射机运到井底,再用吊盘运输半成品料喷护的方法,在吊篮中喷射,并在井内设一风扇加强通风。
&&& 六、防堵井措施、处理堵井措施及方法
&&& 在施工过程中,通过对竖井各段的施工,均发生大小不同的多次堵井,给进度及施工安全影响很大,现分析如下;
&&& 6.1 竖井I段在开始扩挖施工中,首先选用&1.4导井直接作为溜碴井,全断面一次从&1.4m刷大到&9.0m,放炮后,块径大、碴量多,溜碴井堵塞可能性大大增加,在井口部位出现导井堵塞现象,后来采用先将导井直径刷大到&3.0m,再从&3.0m刷大到&9.0m,未出现堵孔现象。
&&& 6.2、竖井III刷大开挖,总结竖井I段刷大开挖经验后,先将导井从&1.4m刷大开挖到&2.5m,再从&2.5m扩大到设计规格线,在扩挖过程中,从未发生过堵井现象。
&&& 6.3、竖井II段的扩挖,因采用全断面一次刷大的方法,直接利用&1.4m反导井作为溜渣井,与竖井III段相比较,采取了降低单循环钻孔深度,减小炮孔间排距,达到最终减小爆破粒径的目的,但在施工过程中,第一、二排炮扩挖时,因炮孔间排距未严格控制,爆破粒径太大,造成导井上口堵塞,经过调整后,未出现上口堵塞现象;因导井下部容渣量较小,出渣不及时,造成导井下口堵塞三次,给工程带来较大的难度,处理时安全隐患极大,且影响施工进度。
&&& 6.4、综合以上各段竖井的扩挖施工,提出以下几点建议:
&&& 6.4.1合理布置炮孔密度,合理装药,炮孔间排距控制不大于60cm,爆破后松渣粒径不大于50cm;
&&& 6.4.2用非电秒延期雷管合理分段位延期爆破,避免爆炮后石渣集中挤压堵井;
&&& 6.4.3各段下料导井下口堆渣距井口距离小于2米时应及时出渣,避免堆渣堵井;
&&& 6.4.4人工在井内扒渣时,注意观察导井内风向及气流情况,防止堵井后继续下渣,致使导井全部堵死,无法处理。
&&& 6.4.5对各段下部集渣区作扩挖处理,加大集渣容量,出渣次数按不堵塞下部集渣区导井孔口的排炮数为原则,以多堆渣为好,减少出渣次数,可加快施工进度。
&&& 6.4.5溜渣导井被堵疏通方法:
&&& 一旦出现堵井事故,先认真观察堵塞部位,分析堵塞原因和堵塞长度,以便采取相应措施及时处理。
堵井一般容易发生在导井的上部和下部。导井上口堵井多是由爆破产生的大块径石造成,可用人工系安全带将松渣清理一部分,尽可能找出堵井大石块,打眼或埋炸药包,进行爆破处理。
&&& 堵井部位如在导井下部,一般是由于出渣不及时或容渣量不够产生,待底部出渣到露出导井后,用长杆举炸药包固定在堵塞部位起爆,利用爆破冲击波震动使其下落,该工作危险性较大,必须将洞底人行通道进行安全处理,从洞口一侧向上爬,以防石渣突然下落,造成事故。
&&& 七、& 结束语
&&& 通过周宁水电站高压竖井的开挖施工,笔者认为:
&&& 1、通过施工实践证明竖井施工采用反井钻机施工技术,确保了工程的施工安全,加快了施工进度,提高了工效,在周宁水电站竖井工程应用中取得了良好的效果。
&&& 2、竖井内的各种临时支护,在竖井各段施工中起到了很大作用,能满足要求,给整个竖井开挖施工及以后的砼施工提供了安全的施工环境。
&&& 3、由于周宁水电站施工的特殊性,三段竖井的开挖方法各不相同,尤其是II段与III段各有特点,现对比如下:
周宁水电站竖井各段扩挖施工情况对比表:
开挖方量(m3)
单耗(kg/m3)
扩挖总耗时(d)
平均日开挖强度(m/d)
施工期安全状况
&&& 在地质情况较好时,应优&& 先采用III段的开挖方式,可加快施工进度,且爆破单耗较低,但扩大导孔时,因不支护,危险性较大,超高竖井应少使用,II段的开挖方式,虽单耗相对较高,但只要能控制好爆破粒径,及时出渣,避免堵塞导井,进度仍然可以保证,最大的优点在于全断面一次扩挖,能及时支护,施工安全系数较高,对弱地质条件下应优先采用。
&&& 如竖井断面较大时,可考虑将反井钻完成的反导孔直接施工到2.0~2.5米,既能保证施工安全,又能满足爆破后溜渣导井直径要求,是理想选择,美中不足是反井钻扩大反导孔,每米施工单价较高,随着反井钻在水电工程中的广泛运用,可能会得到解决。
我来说两句 ()
本月热门下载
水利热门论文
Copyright & 2007 - 2012
All Rights Reserved.
E-mail: 手机:刚性扩大基础为什么要验算基底合力偏心距_百度知道
刚性扩大基础为什么要验算基底合力偏心距
这是因为刚性扩大基础是刚性基础,基础没有配置钢俯贰碘荷鄢沽碉泰冬骏筋,当基底存在合力偏心距时,基底一侧将会受到拉力,刚性基础抗拉性能很差,所以需要验算,具体参看《地基与基础》
其他类似问题
偏心距的相关知识
其他1条回答
是尽可能使基底俯贰碘荷鄢沽碉泰冬骏应力分布比较均匀,以免基底两侧应力相差过大,使基础产生较大的不均匀沉降,墩、台发生倾斜,影响正常使用
您可能关注的推广
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁内孔表面加工常用方法及加工方案介绍_刀具/量具_中国百科网
您现在的位置: >
> 文章内容:
内孔表面加工常用方法及加工方案介绍
    
内孔表面加工方法较多,常用的有钻孔、扩孔、铰孔、镗孔、磨孔、拉孔、研磨孔、珩磨孔、滚压孔等。   一、钻孔   用钻头在工件实体部位加工孔称为钻孔。钻孔属粗加工,可达到的尺寸公差等级为IT13~IT11,表面粗糙度值为Ra50~12.5&m。由于麻花钻长度较长,钻芯直径小而刚性差,又有横刃的影响,故钻孔有以下工艺特点:   1.钻头容易偏斜。由于横刃的影响定心不准,切入时钻头容易引偏;且钻头的刚性和导向作用较差,切削时钻头容易弯曲。在钻床上钻孔时,如图7-2a所示,容易引起孔的轴线偏移和不直,但孔径无显著变化;在车床上钻孔时,如图7-2b 所示,容易引起孔径的变化,但孔的轴线仍然是直的。因此,在钻孔前应先加工端面,并用钻头或中心钻预钻一个锥坑,如图7-3所示,以便钻头定心。钻小孔和深孔时,为了避免孔的轴线偏移和不直,应尽可能采用工件回转方式进行钻孔。
  2.孔径容易扩大。钻削时钻头两切削刃径向力不等将引起孔径扩大;卧式车床钻孔时的切入引偏也是孔径扩大的重要原因;此外钻头的径向跳动等也是造成孔径扩大的原因。   3.孔的表面质量较差。钻削切屑较宽,在孔内被迫卷为螺旋状,流出时与孔壁发生摩擦而刮伤已加工表面。   4.钻削时轴向力大。这主要是由钻头的横刃引起的。试验表明,钻孔时50%的轴向力和15%的扭矩是由横刃产生的。因此,当钻孔直径d30mm时,一般分两次进行钻削。第一次钻出(0.5~0.7)d,第二次钻到所需的孔径。由于横刃第二次不参加切削,故可采用较大的进给量,使孔的表面质量和生产率均得到提高。
  二、扩孔   扩孔是用扩孔钻对已钻出的孔做进一步加工,以扩大孔径并提高精度和降低表面粗糙度值。扩孔可达到的尺寸公差等级为IT11~IT10, 表面粗糙度值为Ra12.5~6.3&m,属于孔的半精加工方法,常作铰削前的预加工,也可作为精度不高的孔的终加工。   扩孔方法如图7-4所示,扩孔余量(D-d),可由表查阅,。扩孔钻的形式随直径不同而不同。直径为&P10~&P32的为锥柄扩孔钻,如图7-5a所示。直径&P25~&P80的为套式扩孔钻,如图7-5b所示。
  扩孔钻的结构与麻花钻相比有以下特点:   1.刚性较好。由于扩孔的背吃刀量小,切屑少,扩孔钻的容屑槽浅而窄,钻芯直径较大,增加了扩孔钻工作部分的刚性。   2.导向性好。扩孔钻有3~4个刀齿,刀具周边的棱边数增多,导向作用相对增强。   3.切屑条件较好。扩孔钻无横刃参加切削,切削轻快,可采用较大的进给量,生产率较高;又因切屑少,排屑顺利,不易刮伤已加工表面。   因此扩孔与钻孔相比,加工精度高,表面粗糙度值较低,且可在一定程度上校正钻孔的轴线误差。此外,适用于扩孔的机床与钻孔相同。   三、铰孔   铰孔是在半精加工(扩孔或半精镗)的基础上对孔进行的一种精加工方法。铰孔的尺寸公差等级可达IT9~IT6,表面粗糙度值可达Ra3.2~0.2&m。   铰孔的方式有机铰和手铰两种。在机床上进行铰削称为机铰,如图7-6所示;用手工进行铰削的称为手铰,如图7-7所示。  
  铰刀一般分为机用铰刀和手用铰刀两种形式。如图7-8所示。   机用铰刀可分为带柄的(直径1~20mm为直柄,直径10~32mm为锥柄,如图7-8a、b、c所示)和套式的(直径25~80mm,如图7-8f所示)。手用铰刀可分为整体式(如图7-8d所示)和可调式(如图7-8e所示)两种。铰削不仅可以用来加工圆柱形孔,也可用锥度铰刀加工圆锥形孔(如图7-8g、h所示)。   1.铰削方式   铰削的余量很小,若余量过大,则切削温度高,会使铰刀直径膨胀导致孔径扩大,使切屑增多而擦伤孔的表面;若余量过小,则会留下原孔的刀痕而影响表面粗糙度。一般粗铰余量为0.15~0.25mm,精铰余量为0.05~0.15mm。铰削应采用低切削速度,以免产生积屑瘤和引起振动,一般粗铰=4~10m/min, 精铰 =1.5~5m/min。机铰的进给量可比钻孔时高3~4倍,一般可0.5~1.5mm/r。为了散热以及冲排屑末、减小摩擦、抑制振动和降低表面粗糙度值,铰削时应选用合适的切削液。铰削钢件常用乳化液,铰削铸铁件可用煤油。   如图7-9a所示,在车床上铰孔,若装在尾架套筒中的铰刀轴线与工件回转轴线发生偏移,则会引起孔径扩大。如图7-9b所示,在钻床上铰孔,若铰刀轴线与原孔的轴线发生偏移,也会引起孔的形状误差。
  机用铰刀与机床常用浮动联接,以防止铰削时孔径扩大或产生孔的形状误差。铰刀与机床主轴浮动联接所用的浮动夹头如图7-10所示。浮动夹头的锥柄1安装在机床的锥孔中,铰刀锥柄安装在锥套2中,挡钉3用于承受轴向力,销钉4可传递扭矩。由于锥套2的尾部与大孔、销钉4与小孔间均有较大间隙,所以铰刀处于浮动状态。
  2.铰削的工艺特点   (1)铰孔的精度和表面粗糙度主要不取决于机床的精度,而取决于铰刀的精度、铰刀的安装方式、加工余量、切削用量和切削液等条件。例如在相同的条件下,在钻床上铰孔和在车床上铰孔所获得的精度和表面粗糙度基本一致。   (2)铰刀为定径的精加工刀具,铰孔比精镗孔容易保证尺寸精度和形状精度,生产率也较高,对于小孔和细长孔更是如此。但由于铰削余量小,铰刀常为浮动联接,故不能校正原孔的轴线偏斜,孔与其它表面的位置精度则需由前工序或后工序来保证。   (3)铰孔的适应性较差。一定直径的铰刀只能加工一种直径和尺寸公差等级的孔,如需提高孔径的公差等级,则需对铰刀进行研磨。铰削的孔径一般小于&P80mm,常用的在&P40mm以下。对于阶梯孔和盲孔则铰削的工艺性较差。   四、镗孔、车孔   镗孔是用镗刀对已钻出、铸出或锻出的孔做进一步的加工。可在车床、镗床或铣床上进行。镗孔是常用的孔加工方法之一,可分为粗镗、半精镗和精镗。粗镗的尺寸公差等级为IT13~IT12,表面粗糙度值为Ra12.5~6.3&m;半精镗的尺寸公差等级为IT10~IT9,表面粗糙度值为Ra6.3~3.2&m;精镗的尺寸公差等级为IT8~IT7,表面粗糙度值为Ra1.6~0.8&m。   1.车床车孔 车床车孔如图7-11所示。车不通孔或具有直角台阶的孔(图7&11b),车刀可先做纵向进给运动,切至孔的末端时车刀改做横向进给运动,再加工内端面。这样可使内端面与孔壁良好衔接。车削内孔凹槽(图7&11d),将车刀伸入孔内,先做横向进刀,切至所需的深度后再做纵向进给运动。
  车床上车孔是工件旋转、车刀移动,孔径大小可由车刀的切深量和走刀次数予以控制,操作较为方便。   车床车孔多用于加工盘套类和小型支架类零件的孔。
2.镗床镗孔   镗床镗孔主要有以下三种方式:   (1)镗床主轴带动刀杆和镗刀旋转,工作台带动工件做纵向进给运动,如图7-12所示。这种方式镗削的孔径一般小于120mm左右。图7-12a所示为悬伸式刀杆,不宜伸出过长,以免弯曲变形过大,一般用以镗削深度较小的孔。图7-12b所示的刀杆较长,用以镗削箱体两壁相距较远的同轴孔系。为了增加刀杆刚性,其刀杆另一端支承在镗床后立柱的导套座里。
  (2)镗床主轴带动刀杆和镗刀旋转,并做纵向进给运动,如图7-13所示。这种方式主轴悬伸的长度不断增大,刚性随之减弱,一般只用来镗削长度较短的孔。
  上述两种镗削方式,孔径的尺寸和公差要由调整刀头伸出的长度来保证,如图7-14所示。需要进行调整、试镗和测量,孔径合格后方能正式镗削,其操作技术要求较高。   (3)镗床平旋盘带动镗刀旋转,工作台带动工件做纵向进给运动。   图7-15所示的镗床平旋盘可随主轴箱上、下移动,自身又能做旋转运动。其中部的径向刀架可做径向进给运动,也可处于所需的任一位置上。      如图7-16a所示,利用径向刀架使镗刀处于偏心位置,即可镗削大孔。&P200mm以上的孔多用这种镗削方式,但孔不宜过长。图7-16b为镗削内槽,平旋盘带动镗刀旋转,径向刀架带动镗刀做连续的径向进给运动。若将刀尖伸出刀杆端部,亦可镗削孔的端面。   镗床主要用于镗削大中型支架或箱体的支承孔、内槽和孔的端面;镗床也可用来钻孔、扩孔、铰孔、铣槽和铣平面。   3.铣床镗孔   在卧式铣床上镗孔与图7-12a所示的方式相同,镗刀杆装在卧式铣床的主轴锥孔内做旋转运动,工件安装在工作台上做横向进给运动。   4.浮动镗削   如上所述,车床、镗床和铣床镗孔多用单刃镗刀。在成批或大量生产时,对于孔径大(>&P80mm)、孔深长、精度高的孔,均可用浮动镗刀进行精加工。   可调节的浮动镗刀块如图7-17所示。调节时,松开两个螺钉2,拧动螺钉3以调节刀块1的径向位置,使之符合所镗孔的直径和公差。浮动镗刀在车床上车削工件如图7-18所示。工作时刀杆固定在四方刀架上,浮动镗刀块装在刀杆的长方孔中,依靠两刃径向切削力的平衡而自动定心,从而可以消除因刀块在刀杆上的安装误差所引起的孔径误差。
&   浮动镗削实质上相当于铰削,其加工余量以及可达到的尺寸精度和表面粗糙度值均与铰削类似。浮动镗削的优点是易于稳定地保证加工质量,操作简单,生产率高。但不能校正原孔的位置误差,因此孔的位置精度应在前面的工序中得到保证。   5.镗削的工艺特点   单刃镗刀镗削具有以下特点:   (1)镗削的适应性强。镗削可在钻孔、铸出孔和锻出孔的基础上进行。可达的尺寸公差等级和表面粗糙度值的范围较广;除直径很小且较深的孔以外,各种直径和各种结构类型的孔几乎均可镗削,如表7-1所示。   (2)镗削可有效地校正原孔的位置误差,但由于镗杆直径受孔径的限制,一般其刚性较差,易弯曲和振动,故镗削质量的控制(特别是细长孔)不如铰削方便。   (3)镗削的生产率低。因为镗削需用较小的切深和进给量进行多次走刀以减小刀杆的弯曲变形,且在镗床和铣床上镗孔需调整镗刀在刀杆上的径向位置,故操作复杂、费时。   (4)镗削广泛应用于单件小批生产中各类零件的孔加工。在大批量生产中,镗削支架和箱体的轴承孔,需用镗模。
  五、拉孔
  拉孔是一种高效率的精加工方法。除拉削圆孔外,还可拉削各种截面形状的通孔及内键槽,如图7-19所示。拉削圆孔可达的尺寸公差等级为IT9~IT7,表面粗糙度值为Ra1.6~0.4&m。
  1.拉削可看作是按高低顺序排列的多把刨刀进行的刨削,如图7-20所示。圆孔拉刀的结构如图7-21所示,其各部分的作用如下:   柄部是拉床刀夹夹住拉刀的部位。   颈部直径最小,当拉削力过大时,一般在此断裂,便于焊接修复。   过渡锥引导拉刀进入被加工的孔中。   前导部分保证工件平稳过渡到切削部分,同时可检查拉前的孔径是否过小,以免第一个刀齿负载过大而被损坏。   切削部分包括粗切齿和精切齿,承担主要的切削工作。   校准部分为校准齿,其作用是校正孔径,修光孔壁。当切削齿刃磨后直径减小时,前几个校准齿则依次磨成切削齿。   后导部分在拉刀刀齿切离工件时,防止工件下垂刮伤已加工表面和损坏刀齿。   卧式拉床如图7-22所示。床身内装有液压驱动油缸,活塞拉杆的右端装有随动支架和刀夹,用以支承和夹持拉刀。工作前,拉刀支持在滚轮和拉刀尾部支架上,工件由拉刀左端穿入。当刀夹夹持拉刀向左作直线移动时,工件贴靠在&支撑&上,拉刀即可完成切削加工。拉刀的直线移动为主运动,进给运动是靠拉刀的每齿升高量来完成的。
  (1)拉削圆孔如图7-23所示。拉削的孔径一般为8~125mm,孔的长径比一般不超过5。拉前一般不需要精确的预加工,钻削或粗镗后即可拉削。若工件端面与孔轴线不垂直,则将端面贴靠在拉床的球面垫圈上,在拉削力的作用下,工件连同球面垫圈一起略为转动,使孔的轴线自动调节到与拉刀轴线方向一致,可避免拉刀折断。   (2)拉削内键槽如图7-24a所示。键槽拉刀呈扁平状,上部为刀齿。工件与拉刀的正确位置由导向元件来保证。拉刀导向元件(图7-24b)的圆柱1插入拉床端部孔内,圆柱2用以安放工件,槽3安放拉刀。
  2.拉削的工艺特点   (1)拉削时拉刀多齿同时工作,在一次行程中完成粗精加工,因此生产率高。   (2)拉刀为定尺寸刀具,且有校准齿进行校准和修光;拉床采用液压系统,传动平稳,拉削速度很低(=2~8m/min),切削厚度薄,不会产生积屑瘤,因此拉削可获得较高的加工质量。   (3)拉刀制造复杂,成本昂贵,一把拉刀只适用于一种规格尺寸的孔或键槽,因此拉削主要用于大批大量生产或定型产品的成批生产。   (4)拉削不能加工台阶孔和盲孔。由于拉床的工作特点,某些复杂零件的孔也不宜进行拉削,例如箱体上的孔。   六、磨孔   磨孔是孔的精加工方法之一,可达到的尺寸公差等级为IT8~IT6,表面粗糙度值为Ra0.8~0.4&m。   磨孔可在内圆磨床或万能外圆磨床上进行,如图7-25所示。使用端部具有内凹锥面的砂轮可在一次装夹中磨削孔和孔内台肩面,如图7-26所示。   磨孔和磨外圆相比有以下不利的方面:   (1)磨孔的表面粗糙度值一般比外圆磨削略大,因为常用的内圆磨头其转速一般不超过20000r/min,而砂轮的直径小,其圆周速度很难达到外圆磨削的35~50m/s。   (2)磨削精度的控制不如外圆磨削方便。因为砂轮与工件的接触面积大,发热量大,冷却条件差,工件易烧伤;特别是砂轮轴细长、刚性差,容易产生弯曲变形而造成内圆锥形误差。因此,需要减小磨削深度,增加光磨行程次数。   (3)生产率较低。因为砂轮直径小,磨损快;且冷却液不容易冲走屑末,砂轮容易堵塞,需要经常修整或更换,使辅助时间增加。此外磨削深度减少和光磨次数的增加,也必然影响生产率。因此磨孔主要用于不宜或无法进行镗削、铰削和拉削的高精度孔以及淬硬孔的精加工。 &  
七、孔的精密加工
  1.精细镗孔   精细镗与镗孔方法基本相同,由于最初是使用金刚石作镗刀,所以又称金刚镗。这种方法常用于材料为有色金属合金和铸铁的套筒零件孔的终加工,或作为珩磨和滚压前的预加工。精细镗孔可获得精度高和表面质量好的孔,其加工的经济精度为IT7~IT6,表面粗糙度值为Ra0.4~0.05&m。   目前普遍采用硬质合金YT30、YT15、YG3X或人工合成金刚石和立方氮化硼作为精细镗刀具的材料。为了达到高精度与较小的表面粗糙度值,减少切削变形对加工质量的影响,采用回转精度高、刚度大的金刚镗床,并选择切削速度较高(切钢为200m/min;切铸铁为100m/min;切铝合金为300m/min),加工余量较小(约0.2~0.3mm),进给量较小(0.03~0.08mm/r),以保证其加工质量。精细镗孔的尺寸控制,采用微调镗刀头,图7-27所示的是一种带游标刻度盘的微调镗刀,刀杆4上夹有可转位刀片5,刀杆4上有精密的小螺距螺纹,刻度盘3的螺母与刀杆4组成精密的丝杠螺母副。微调时,半松开夹紧螺钉7,转动刻度盘3,因刀杆4用键9导向,因此刀杆只能作直线移动,从而实现微调,最后将夹紧螺钉锁紧。这种微调镗刀的刻度值可达0.0025mm。
  2.珩磨   珩磨是用油石条进行孔加工的一种高效率的光整加工方法,需要在磨削或精镗的基础上进行。珩磨的加工精度高,珩磨后尺寸公差等级为IT7~IT6,表面粗糙度值为Ra0.2~0.05&m。   珩磨的应用范围很广,可加工铸铁件、淬硬和不淬硬的钢件以及青铜等,但不宜加工易堵塞油石的塑性金属。珩磨加工的孔径为&P5~&P500mm,也可加工L/D>10的深孔,因此广泛应用于加工发动机的汽缸、液压装置的油缸以及各种炮筒的孔。
  珩磨是低速大面积接触的磨削加工,与磨削原理基本相同。珩磨所用的磨具是由几根粒度很细的油石条组成的珩磨头。珩磨时,珩磨头的油石有三种运动:旋转运动、往复直线运动和施加压力的径向运动,如图7-28a所示。旋转和往复直线运动是珩磨的主要运动,这两种运动的组合,使油石上的磨粒在孔的内表面上的切削轨迹成交叉而不重复的网纹,如图7-28b所示。径向加压运动是油石的进给运动,施加压力愈大,进给量就愈大。   在珩磨时,油石与孔壁的接触面积较大,参加切削的磨粒很多,因而加在每颗磨粒上的切削力很小(磨粒的垂直载荷仅为磨削的1/50~1/100),珩磨的切削速度较低(一般在100m/min以下,仅为普通磨削的1/30~1/100),在珩磨过程中又施加大量的冷却液,所以在珩磨过程中发热少,孔的表面不易烧伤,而且加工变形层极薄,从而被加工孔可获得很高的尺寸精度、形状精度和表面质量。   为使油石能与孔表面均匀地接触,能切去小而均匀的加工余量,珩磨头相对工件有小量的浮动,珩磨头与机床主轴是浮动连接,因此珩磨不能修正孔的位置精度和孔的直线度,孔的位置精度和孔的直线度应在珩磨前的工序给予保证。
 3.研磨   研磨也是孔常用的一种光整加工方法,需在精镗、精铰或精磨后进行。研磨后孔的尺寸公差等级可提高到IT6~IT5,表面粗糙度值为Ra0.1~0.008&m,孔的圆度和圆柱度亦相应提高。   研磨孔所用的研具材料、研磨剂、研磨余量等均与研磨外圆类似。   套筒零件孔的研磨方法如图7-29所示。图中的研具为可调式研磨棒,由锥度心棒和研套组成。拧动两端的螺母,即可在一定范围内调整直径的大小。研套上的槽和缺口,为在调整时研套能均匀地张开或收缩,并可存贮研磨剂。
  研磨前,套上工件,将研磨棒安装在车床上,涂上研磨剂,调整研磨棒直径使其对工件有适当的压力,即可进行研磨。研磨时,研磨棒旋转,手握工件往复移动。   固定式研磨棒多用于单件生产。其中带槽研磨棒(如图7-30a)便于存贮研磨剂,用于粗研;光滑研磨棒(如图7-30b)一般用于精研。
  壳体或缸筒类零件的大孔,需要研磨时可在钻床或改装的简易设备上进行,由研磨棒同时做旋转运动和轴向移动,但研磨棒与机床主轴需成浮动连接。否则当研磨棒轴线与孔轴线发生偏斜时,将产生孔的形状误差。 五& 滚压内孔 滚压加工零件实际压入量很小,且是靠零件加工表面自身定位进行加工,故能降低零件的表面粗糙度,提高尺寸精度,但零件的形状偏差不会有明显改善,所以零件滚压加工后的精度主要决定于零件滚压前预加工(车削)的精度,表面粗糙度.滚压加工是无屑加工,无发热现象,完工尺寸即成形尺寸,加工尺寸容易控制.滚压加工零件表面层产生残余压应力和冷硬化,可提高零件疲劳强度,生产效率高.但需制作滚压工具. 滚压加工对上道工序要求高,不能提高零件形状精度.因加工过程无发热现象,尺寸容易控制;零件加工表面层产生的残余压应力和冷硬化有利于提高零件使用性能;生产效率高.
滚压加工的表面质量对工件的使用性能有以下影响: ①对耐磨性的影响.表面粗糙度对摩擦副的初期磨损影响很大,但并不是粗糙度越小越耐磨.在一定工作条件下,摩擦副表面总是存在一个最佳的参数值,约为 0.32~1.25,&m. ②对疲劳强度的影响.在交变载荷的作用下,工件表面的凹凸不平和缺陷容易引起应力集中而产生疲劳裂纹,导致疲劳破坏.对于一些承受交变载荷的重要零件,如曲轴的曲拐与轴颈交界处,要进行光整加工,以减小其表面粗糙度,提高疲劳强度. ③对耐腐蚀性的影响.工件表面越粗糙,越容易积聚腐蚀性物质;凹谷越深,渗透与腐蚀作用越强烈.因此,减小零件表面粗糙度值,可以提高零件的耐腐蚀性能. ④对配合性质的影响.粗糙的配合表面,会在配合件磨损后增大配合间隙,改变配合性质,降低配合精度和刚度,影响运行的平稳性和可靠性.因此对有配合要求的表面,必须限定较小的表面粗糙度参数值.
& 此外,对于液压缸和滑阀,较大的表面粗糙度值会影响密封性;对于工作时滑动的零件,恰当的表面粗糙度值能提高运动的灵活性,减少发热和功率损失等.可见,提高加工表面质量,对保证结构和零部件的使用性能、提高其使用寿命是至关重要的. 滚压辅助加工技术是伴随机械加工的发展而逐渐发展起来的新型加工技术&.表面滚压加工方法是一种辅助表面改性方法,该方法具有弹性压力小、摩擦力小、表面粗糙度 Ra值进一步降低、表面硬度显著提高以及表面耐磨性增加等优点,因而受到越来越多技术人员的关注和青睐. 对于一种新的加工技术,技术人员更关注材料通过该技术能得到的优良性能,而对于工艺参数的选择及其对加工质量的影响却少有涉及.表面滚压加工技术中,主轴转速、轴向进给、加工次数、静压力和润滑等加工参数的选择直接决定了最终的表面状态.滚压头,光杆辊压机,数控光机,滚压刀,滚扎头
Mail: Copyright by ;All rights reserved.

我要回帖

更多关于 小孔雀鱼怎么养 的文章

 

随机推荐