音频差分放大电路路中方法芯片外围电路主要有哪些功能?有哪些电子零件?

FS810音频功率放大集成电路_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
喜欢此文档的还喜欢
FS810音频功率放大集成电路
音​箱
阅读已结束,如果下载本文需要使用
想免费下载本文?
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢集成电路代换方法与技巧
> 集成电路代换方法与技巧
集成电路代换方法与技巧
一、直接代换直接代换是指用其他IC不经任何改动而直接取代原来的IC,代换后不影响机器的主要性能与指标。其代换原则是:代换IC的功能、性能指标、封装形式、引脚用途、引脚序号和间隔等几方面均相同。其中IC的功能相同不仅指功能相同;还应注意逻辑极性相同,即输出输入电平极性、电压、电流幅度必须相同。例如:图像中放IC,TA7607与TA7611,前者为反向高放AGC,后者为正向高放AGC,故不能直接代换。除此之外还有输出不同极性AFT电压,输出不同极性的同步脉冲等IC都不能直接代换,即使是同一公司或厂家的产品,都应注意区分。性能指标是指IC的主要电参数(或主要特性曲线)、最大耗散功率、最高工作电压、频率范围及各信号输入、输出阻抗等参数要与原IC相近。功率小的代用件要加大散热片。其中1.同一型号IC的代换同一型号IC的代换一般是可靠的,安装集成电路时,要注意方向不要搞错,否则,通电时集成电路很可能被烧毁。有的单列直插式功放IC,虽型号、功能、特性相同,但引脚排列顺序的方向是有所不同的。 例如,双声道功放IC LA4507,其引脚有“正”、“反”之分,其起始脚标注(色点或凹坑)方向不同;没有后缀与后缀为"R"的IC等,例如 M5115P与M5115RP.2.不同型号IC的代换⑴型号前缀字母相同、数字不同IC的代换。这种代换只要相互间的引脚功能完全相同,其内部电路和电参数稍有差异,也可相互直接代换。如:伴音中放IC LA1363和LA1365,后者比前者在IC第⑤脚内部增加了一个稳压二极管,其它完全一样。⑵型号前缀字母不同、数字相同IC的代换。一般情况下,前缀字母是表示生产厂家及电路的类别,前缀字母后面的数字相同,大多数可以直接代换。但也有少数,虽数字相同,但功能却完全不同。例如,HA1364是伴音IC,而UPC1364是色解码IC;4558,8脚的是运算NJM4558,14脚的是CD4558数字电路; 故二者完全不能代换。⑶型号前缀字母和数字都不同IC的代换。有的厂家引进未封装的IC芯片,然后加工成按本厂命名的产品。还有如为了提高某些参数指标而改进产品。这些产品常用不同型号进行命名或用型号后缀加以区别。例如,AN380与UPC1380可以直接代换;AN5620、TEA5620、DG5620等可以直接代换。二、非直接代换非直接代换是指不能进行直接代换的IC稍加修改外围电路,改变原引脚的排列或增减个别元件等,使之成为可代换的IC的方法。代换原则:代换所用的IC可与原来的IC引脚功能不同、外形不同,但功能要相同,特性要相近;代换后不应影响原机性能。1.不同封装IC的代换相同类型的IC芯片,但封装外形不同,代换时只要将新器件的引脚按原器件引脚的形状和排列进行整形。例如,AFT电路CA3064和CA3064E,前者为圆形封装,辐射状引脚;后者为双列直插塑料封装,两者内部特性完全一样,按引脚功能进行连接即可。双列IC AN7114、AN7115与LA4100、LA4102封装形式基本相同,引脚和散热片正好都相差180°。前面提到的AN5620带散热片双列直插16脚封装、TEA5620双列直插18脚封装,9、10脚位于集成电路的右边,相当于AN5620的散热片,二者其它脚排列一样,将9、10脚连起来接地即可使用。2.电路功能相同但个别引脚功能不同IC的代换代换时可根据各个型号IC的具体参数及说明进行。如电视机中的AGC、视频信号输出有正、负极性的区别,只要在输出端加接倒相器后即可代换。3.类型相同但引脚功能不同IC的代换这种代换需要改变外围电路及引脚排列,因而需要一定的理论知识、完整的资料和丰富的实践经验与技巧。4.有些空脚不应擅自接地内部等效电路和应用电路中有的引出脚没有标明,遇到空的引出脚时,不应擅自接地,这些引出脚为更替或备用脚,有时也作为内部连接。5.用分立元件代换IC有时可用分立元件代换IC中被损坏的部分,使其恢复功能。代换前应了解该IC的内部功能原理、每个引出脚的正常电压、波形图及与外围元件组成电路的工作原理。同时还应考虑:⑴信号能否从IC中取出接至外围电路的输入端:⑵经外围电路处理后的信号,能否连接到集成电路内部的下一级去进行再处理(连接时的信号匹配应不影响其主要参数和性能)。如中放IC损坏,从典型应用电路和内部电路看,由伴音中放、鉴频以及音频放大级成,可用信号注入法找出损坏部分,若是音频放大部分损坏,则可用分立元件代替。6.组合代换组合代换就是把同一型号的多块IC内部未受损的电路部分,重新组合成一块完整的IC,用以代替功能不良的IC的方法。对买不到原配IC的情况下是十分适用的。但要求所利用IC内部完好的电路一定要有接口引出脚。非直接代换关键是要查清楚互相代换的两种IC的基本电参数、内部等效电路、各引脚的功能、IC与外部元件之间连接关系的资料。实际操作时予以注意:⑴集成电路引脚的编号顺序,切勿接错;⑵为适应代换后的IC的特点,与其相连的外围电路的元件要作相应的改变;⑶电源电压要与代换后的IC相符,如果原电路中电源电压高,应设法降压;电压低,要看代换IC能否工作。⑷代换以后要测量IC的静态工作电流,如电流远大于正常值,则说明电路可能产生自激,这时须进行去耦、调整。若增益与原来有所差别,可调整反馈电阻阻值;⑸代换后IC的输入、输出阻抗要与原电路相匹配;检查其驱动能力。⑹在改动时要充分利用原电路板上的脚孔和引线,外接引线要求整齐,避免前后交*,以便检查和防止电路自激,特别是防止高频自激;(7)在通电前电源Vcc回路里最好再串接一直流电流表,降压电阻阻值由大到小观察集成电路总电流的变化是否正常。
分享给小伙伴们:
我来说两句……
微信公众账号后使用快捷导航没有帐号?
查看: 18467|回复: 110
单片机系统外围电路中的电子器件选型简单指南
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
各种类型电阻选用经验
1.固定电阻器的选用&&固定电阻器有多种类型,选择哪一种材料和结构的电阻器, 应根据应用电路的具体要求而定。 高频电路应选用分布电感和分布电容小的非线绕电阻器,例如碳膜电阻器、金属电阻器和 金属氧化膜电阻器等。
高增益小信号放大电路应选用低噪声电阻器,例如金属膜电阻器、碳膜电阻器和线绕电阻 器,而不能使用噪声较大的合成碳膜电阻器和有机实心电阻器。
线绕电阻器的功率较大,电流噪声小,耐高温,但体积较大。普通线绕电阻器常用于低频 电路或中作限流电阻器、分压电阻器、泄放电阻器或大功率管的偏压电阻器。精度较高的 线绕电阻器多用于固定衰减器、电阻箱、计算机及各种精密电子仪器中。
所选电阻器的电阻值应接近应用电路中计算值的一个标称值,应优先选用标准系列的电阻 器。一般电路使用的电阻器允许误差为±5%~±10%。精密仪器及特殊电路中使用的电阻器,应选用精密电阻器。
所选电阻器的额定功率,要符合应用电路中对电阻器功率容量的要求,一般不应随意加大 或减小电阻器的功率。若电路要求是功率型电阻器,则其额定功率可高于实际应用电路要 求功率的1~2倍。
2.熔断电阻器的选用&&熔断电阻器具有保护功能的电阻器。选用时应考虑其双重性能,根 据电路的具体要求选择其阻值和功率等参数。既要保证它在过负荷时能快速熔断,又要保 证它在正常条件下能长期稳定的工作。电阻值过大或功率过大,均不能起到保护作用。
3.热敏电阻器的选用&&热敏电阻器的种类和型号较多,选哪一种热敏电阻器,应根据电路 的具体要求而定。
正温度系数热敏电阻器(PTC)一般用于电冰箱压缩机起动电路、彩色显像管消磁电路、电 动机过电流过热保护电路、限流电路及恒温电加热电路。
压缩机起动电路中常用的热敏电阻器有MZ-01~MZ-04系列、MZ81系列、MZ91系列、MZ92系列 和MZ93系列等。可以根据不同类型压缩机来选用适合它起动的热敏电阻器,以达到最好的 起动效果。
彩色电视机、电脑显示器上使用的消磁热敏电阻器有MZ71~MZ75系列。可根据电视机、显示 器的工作电压(220V或110V)、工作电流及消磁线圈的规格等,选用标称阻值、最大起始 电流、最大工作电压等参数均符合要求的消磁热敏电阻器。
限流用小功率PTC热敏电阻器有MZ2A~MZ2D系列、MZ21系列,电动机过热保护用PTC热敏电阻 器有MZ61系列,应选用标称阻值、开关温度、工作电流及耗散功率等参数符合应用电路要 求的型号。
负温度系数热敏电阻器(NTC)一般用于各种电子产品中作微波功率测量、温度检测、温度 补偿、温度控制及稳压用,选用时应根据应用电路的需要选择合适的类型及型号。
常用的温度检测用NTC热敏电阻器有MF53系列和MF57系列,每个系列又有多种型号(同一类 型、不同型号的NTC热敏电阻器,标准阻值也不相同)可供选择。
常用的稳压用NTC热敏电阻器有MF21系列、RR827系列等,可根据应用电路设计的基准电压 值来选用热敏电阻器稳压值及工作电流。
常用的温度补偿、温度控制用NTC热敏电阻器有MF11~MF17系列。常用的测温及温度控制用 NTC热敏电阻器有MF51系列、MF52系列、MF54系列、MF55系列、MF61系、MF91~MF96系列、MF111系列等多种。MF52系列、MF111系列的NTC热敏电阻器适用于-80℃~+200℃温度范围内 的测温与控温电路。MF51系列、MF91-MF96系列的NTC热敏电阻器适用于300℃以下的测温与 控温电路。MF54系列、MF55系列的NTC热敏电阻器适用于125℃以下的测温与控温电路。
MF61系列、MF92系列的NTC热敏电阻器适用于300℃以上的测温与控温电路。选用温度控制热敏电阻器时,应注意NTC热敏电阻器的温度控制范围是否符合应用电路的要求。
4.压敏电阻器的选用&&压敏电阻器主要应用于各种电子产品的过电压保护电路中,它有多种型号和规格。所选压敏电阻器的主要参数(包括标称电压、最大连续工作电压、最大限制电压、通流容量等)必须符合应用电路的要求,尤其是标称电压要准确。标称电压过高,压敏电阻器起不到过电压保护作用,标称电压过低,压敏电阻器容易误动作或被击穿。
5.光敏电阻器的选用&&选用光敏电阻器时,应首先确定应用电路中所需光敏电阻器的光谱特性类型。若是用于各种光电自动控制系统、电子照相机和光报警器等电子产品,则应选取用可见光光敏电阻器;若是用于红外信号检测及天文、军事等领域的有关自动控制系统、则应选用红外光光敏电阻器;若是用于紫外线探测等仪器中,则应选用紫外光光敏电阻器。
选好光敏电阻器的不谱牧场生类型后,还应看所选光敏电阻器的主要参数(包括亮电阻、暗电阻、最高工作电压、视电流、暗电流、额定功率、灵敏度等)是否符合应用电路的要求。
6.湿敏电阻器的选用&&选用湿敏电阻器时,首先应根据应用电路的要求选择合适的类型。 若用于洗衣机、干衣机等家电中作高湿度检测,可选用氯化锂湿敏电阻器;若用于空调 器、恒湿机等家电中作中等湿度环境的检测,则可选用陶瓷湿敏电阻器;若用于气象监 测、录像机结露检测等方面,则可以选用高分子聚合物湿敏电阻器或硒膜湿敏电阻器。
保证所选用湿敏电阻器的主要参数(包括测湿范围、标称阻值、工作电压等)符合应用电路的要求。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
晶体振荡器(晶振)选型时应考虑的一些重要指标及含义
& &本文介绍了一些足以表现出一个晶体振荡器性能高低的技术指标,如总频差,频率稳定预热时间,频率老化率,压控范围等.了解这些指标的含义.
  总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大频差。
   说明:总频差包括频率温度稳定度、频率温度准确度、频率老化率、频率电源电压稳定度和频率负载稳定度共同造成的最大频差。一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。例如:精密制导雷达。频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。& && && && && && && && && && && && && && &
  fT=±(FMax-fmin)/(fmax+fmin)& && && && && && && && && && && && && &&&
  fTref =±MAX[|(FMax-fref)/fref|,|(fmin-fref)/fref|]& && && && &
fT:频率温度稳定度(不带隐含基准温度)& && && && && && && && && && && &
  fTref:频率温度稳定度(带隐含基准温度)& && && && && && && && && && &&&
  FMax :规定温度范围内测得的最高频率& && && && && && && && && && && &
  FMin:规定温度范围内测得的最低频率& && && && && && && && && && && &&&
  fref:规定基准温度测得的频率
& && && && && && && && && && && && && &&&
  说明:采用fTref指标的晶体振荡器其生产难度要高于采用fT指标的晶体振荡器,故fTref指标的晶体振荡器售价较高。
  频率稳定预热时间:以晶体振荡器稳定输出频率为基准,从加电到输出频率小于规定频率允差所需要的时间。
  说明:在多数应用中,晶体振荡器是长期加电的,然而在某些应用中晶体振荡器需要频繁的开机和关机,这时频率稳定预热时间指标需要被考虑到(尤其是对于在苛刻环境中使用的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用OCXO作为本振,频率稳定预热时间将不少于5分钟,而采用DTCXO只需要十几秒钟)。
  频率老化率:在恒定的环境条件下测量振荡器频率时,振荡器频率和时间之间的关系。这种长期频率漂移是由晶体元件和振荡器电路元件的缓慢变化造成的,可用规定时限后的最大变化率(如±10ppb/天,加电72小时后),或规定的时限内最大的总频率变化(如:±1ppm/(第一年)和±5ppm/(十年))来表示。
  说明:TCXO的频率老化率为:±0.2ppm~±2ppm(第一年)和±1ppm~±5ppm(十年)(除特殊情况,TCXO很少采用每天频率老化率的指标,因为即使在实验室的条件下,温度变化引起的频率变化也将大大超过温度补偿晶体振荡器每天的频率老化,因此这个指标失去了实际的意义)。OCXO的频率老化率为:±0.5ppb~±10ppb/天(加电72小时后),±30ppb~±2ppm(第一年),±0.3ppm~±3ppm(十年)。
  频率压控范围:将频率控制电压从基准电压调到规定的终点电压,晶体振荡器频率的最小峰值改变量。
  说明:基准电压为+2.5V,规定终点电压为+0.5V和+4.5V,压控晶体振荡器在+0.5V频率控制电压时频率改变量为-110ppm,在+4.5V频率控制电压时频率改变量为+130ppm,则VCXO电压控制频率压控范围表示为:≥±100ppm(2.5V±2V)。
  压控频率响应范围:当调制频率变化时,峰值频偏与调制频率之间的关系。通常用规定的调制频率比规定的调制基准频率低若干dB表示。& && && && && && && && && &
  说明:VCXO频率压控范围频率响应为0~10kHz。频率压控线性:与理想(直线)函数相比的输出频率-输入控制电压传输特性的一种量度,它以百分数表示整个范围频偏的可容许非线性度。
  说明:典型的VCXO频率压控线性为:≤±10%,≤±20%。简单的VCXO频率压控线性计算方法为(当频率压控极性为正极性时):
  频率压控线性=±((FMax-fmin)/ f0)×100%
  FMax:VCXO在最大压控电压时的输出频率
  FMin:VCXO在最小压控电压时的输出频率
  f0:压控中心电压频率
  单边带相位噪声£(f):偏离载波f处,一个相位调制边带的功率密度与载波功率之比。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
几种常用二极管的选用经验
本文主要介绍一下几种常用二极管的选用经验,如检波二极管,整流二极管,稳压二极管及开关二极管等.
  1.整流二极管的选用
& &&&整流二极管一般为平面型硅二极管,用于各种电源整流电路中。
   选用整流二极管时,主要应考虑其最大整流电流、最大反向工作电流、截止频率及反向恢复时间等参数。
   普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管即可。例如,1N系列、2CZ系列、RLR系列等。
   开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、反向恢复时间较短的整流二极管(例如RU系列、EU系列、V系列、1SR系列等)或选择快恢复二极管。
& & 2.检波二极管的选用
& & 检波二极管一般可选用点接触型锗二极管,例如2AP系列等。选用时,应根据电路的具体要求来选择工作频率高、反向电流小、正向电流足够大的检波二极管。
  3.稳压二极管的选用
& & 稳压二极管一般用在稳压电源中作为基准电压源或用在过电压保护电路中作为保护二极管。
   选用的稳压二极管,应满足应用电路中主要参数的要求。稳压二极管的稳定电压值应与应用电路的基准电压值相同,稳压二极管的最大稳定电流应高于应用电路的最大负载电流50%左右。
  4、开关二极管的选用
& &&&开关二极管主要应用于收录机、电视机、影碟机等家用电器及电子设备有开关电路、检波电路、高频脉冲整流电路等。
   中速开关电路和检波电路,可以选用2AK系列普通开关二极管。高速开关电路可以选用RLS系列、1SS系列、1N系列、2CK系列的高速开关二极管。要根据应用电路的主要参数(例如正向电流、最高反向电压、反向恢复时间等)来选择开关二极管的具体型号。
  5、变容二极管的选用
& & 选用变容二极管时,应着重考虑其工作频率、最高反向工作电压、最大正向电流和零偏压结电容等参数是否符合应用电路的要求,应选用结电容变化大、高Q值、反向漏电流小的变容二极管。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
开关二极管及整流二极管的选用经验
  1、开关二极管的选用
& && &开关二极管主要应用于收录机、电视机、影碟机等家用电器及电子设备有开关电路、检波电路、高频脉冲整流电路等。
   中速开关电路和检波电路,可以选用2AK系列普通开关二极管。高速开关电路可以选用RLS系列、1SS系列、1N系列、2CK系列的高速开关二极管。要根据应用电路的主要参数(例如正向电流、最高反向电压、反向恢复时间等)来选择开关二极管的具体型号。
  2.整流二极管的选用
& && &整流二极管一般为平面型硅二极管,用于各种电源整流电路中。
   选用整流二极管时,主要应考虑其最大整流电流、最大反向工作电流、截止频率及反向恢复时间等参数。
   普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管即可。例如,1N系列、2CZ系列、RLR系列等。
   开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、反向恢复时间较短的整流二极管(例如RU系列、EU系列、V系列、1SR系列等)或选择快恢复二极管。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
稳压二极管选用时的几点注意事项
稳压二极管用途广泛,使用极多,以下是稳压二极管选用及应用时的几点注意事项:
1.温度对半导体器件的特性影响较大,当环境温度超过 50℃ 时,温度每升高 1℃,应将最大耗散功率降低1%。
2.可将多只稳压二极管串联使用,但由于二极管参数的离散性比较大,不得并联使用。
3.稳压二极管管脚必须在离管壳 5mm 以上处进行焊接,最好使用 30W 以下的电烙铁进行焊接。若使用 40~75W 电烙铁焊接时,焊接时间应不超过 8~10s。尽量使用内装焊料的焊锡丝焊接,不要使用大块焊锡加松香的方法。
4.为了使稳压二极管的电压温度系数得到补偿,可以将稳压二极管与硅二极管(包括硅稳压二极管)串联使用,所串的正向二极管不得超过三个,也可与特殊的温度补偿管串联使用。
5.为了获得较低的稳定电压,可以选择适当的稳压二极管以相反极性方向串联,再加以适当的工作电流来获得。即将稳压二极管正向使用。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
二极管选用原则
电路设计中二极管选用准则
1.根据电路功能的选用:
高频检波电路应选用锗检波二极管,它的特点是工件频率高,正向压降小和结电容
小,2AP11~17用于40M以下,2AP9~10用于100M以下,2AP1~8用于150M以下,2AP30用于400M以
2.根据整机体积
整机向小型化,薄型化和轻型化方向发展,要求配套二极管微型化和片状化.DO-35型开关
二极管和频段开关二极管的玻壳长度为3.8mm,DO-34频段开关二极管的玻壳长度为
2.2mm,SOD-23型塑封变容二极管长度为4mm.
3.根据整机性价比对二极管进行合理选用:
根据整机性价比和配套二极管在整机中的作用,进行合理选用,
电路安装中二极管使用准则
1.低于最大额定值下使用
2.降额使用.
3.很低于最高结温下使用.
4.正确地切断,成型和安装二极管
5.使用注意事项
由于二极管向微型.超微型和片状化发展,在使用中要特别注意以下事项:
1.对于点结触型和玻壳二极管,要防止跌落在坚硬的地面,
2.对于玻壳二极管,焊接时要防止电烙铁直接接触玻壳,
3.对稳压二极管不能加正向电压,
4.肖特基二极管易受静电破坏,人与设备应接地.
5.对片状二极管,注意二极管本身与印制板的膨胀系数.
6.对有配对要求的二极管,在使用中要防止混组,以免影响调试.
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
继电器选用基本方法
1&&按输入信号不同确定继电器种类
... 按输入信号是电、温度、时间、光信号确定选用电磁、温度、时间、光电继电器,这是没有问题的。这里特别说明电压、电流继电器的选用。若整机供给继电器线圈是恒定的电流应选用电流继电器,是恒定电压值则选用电压继电器。
2&&按使用环境选型
... 使用环境条件主要指温度(最大与最小)、湿度(一般指40摄氏度下的最大相对湿度)、低气压(使用高度1000米以下可不考虑)、振动和冲击。此外,尚有封装方式、安装方法、外形尺寸及绝缘性等要求。由于材料和结构不同,继电器承受的环境力学条件各异,超过产品标准规定的环境力学条件下使用,有可能损坏继电器,可按整机的环境力学条件或高一级的条件选用。
... 对电磁干扰或射频干扰比较敏感的装置周围,最好不要选用交流电激励的继电器。选用直流继电器要选用带线圈瞬态抑制电路的产品。那些用固态器件或电路提供激励及对尖峰信号比较敏感地地方,也要选择有瞬态抑制电路的产品。
3&&输入参量的选定
... 与用户密切相关的输入量是线圈工作电压(或电流),而吸合电压(或电流)则是继电器制造厂控制继电器灵敏度并对其进行判断、考核的参数。对用户来讲,它只是一个工作下极限参数值。控制安全系数是工作电压(电流)/吸合电压(电流),如果在吸合值下使用继电器,是不可靠的、不安全的,环境温度升高或处于振动、冲击条件下,将使继电器工作不可靠。整机设计时,不能以空载电压作为继电器工作电压依据,而应将线圈接入作为负载来计算实际电压,特别是电源内阻大时更是如此。当用三极管作为开关元件控制线圈通断时,三极管必须处于开关状态,对6VDC以下工作电压的继电器来讲,还应扣除三极管饱和压降。当然,并非工作值加得愈高愈好,超过额定工作值太高会增加衔铁的冲击磨损,增加触点回跳次数,缩短电气寿命,一般,工作值为吸合值的1.5倍,工作值的误差一般为±10%。
4&&根据负载情况选择继电器触点的种类和容量
... 国内外长期实践证明,约70%的故障发生在触点上,这足见正确选择和使用继电器触点非常重要。
... 触点组合形式和触点组数应根据被控回路实际情况确定。常用的触点组合形式见表6。动合触点组和转换触点组中的动合触点对,由于接通时触点回跳次数少和触点烧蚀后补偿量大,其负载能力和接触可靠性较动断触点组和转换触点组中的动断触点对要高,整机线路可通过对触点位置适当调整,尽量多用动合触点。
... 根据负载容量大小和负载性质(阻性、感性、容性、灯载及马达负载)确定参数十分重要。认为触点切换负荷小一定比切换负荷大可靠是不正确的,一般说,继电器切换负荷在额定电压下,电流大于100mA、小于额定电流的75%最好。电流小于100mA会使触点积碳增加,可靠性下降,故100mA称作试验电流,是国内外专业标准对继电器生产厂工艺条件和水平的考核内容。由于一般继电器不具备低电平切换能力,用于切换50mV、50μA以下负荷的继电器订货,用户需注明,必要时应请继电器生产厂协助选型。
... 继电器的触点额定负载与寿命是指在额定电压、电流下,负载为阻性的动作次数,当超出额定电压时,可参照触点负载曲线选用。当负载性质改变时,其触点负载能力将发生变用,用户可参照表8变换触点负载电流。
电阻性电流& && && && & 电阻性电流& && && && && &电机电流& && && && && &&&灯电流& && && && && && &最小电流
100%& && && && && && && && && && & 30%& && && && && && && && & 20%& && && && && && &&&15%& && && && && &&&100MA
性质& && && && & 浪涌电流& && && && && && && && && && && & 浪涌时间& && && && && && && && &备注
阻性& && && & 稳态电流& && && && && && && && && && && && && && && && && && && && && && && &&&L≤10-4H或cosφ=10-0.01
螺线管& && & 10~20倍稳态电流& && && && && && && &0.07~0.1& &应当看作感性负载,但当τ=L/R&10-4S时可视为阻 性负载
马达& && && && & 5~10倍稳态电流& && && && && &&&0.2~0.5& && && && && && && && && && &&&可用5~6倍电流的阻性负载来代替试验
白&&灯& && && && && && &10~15倍稳态电流& && && & 0.34
汞灯& && && && && && &约3倍稳态电流& && && && && && &&&180~300
霓虹灯& && && && && & 5~10倍稳态电流& && && && &≤10
钠光灯& && && && &&&1~3倍稳态电流
容性负载& && && && & 20~40倍稳态电流& && && && & 0.01~0.04& && && & 长输送线、滤波器、电源类应看作容性负载
变压器& && && && && &3~15倍稳态电流
电磁接触器& && && & 3~10倍稳态电流& && && && &0.02~0.04
继电器外罩上只标阻性额定负载值,其他性质的额定负载请看详细技术条件,其浪涌电流大小请见表9
... 极性转换、相位转换负载场合,最好选用三位置的K型触点(表6),不要选用二位置的Z型触点,除非产品明确规定用于三相交流负载转换。否则随着产品动作次数的增加,其燃弧也会增大,Z型触点可能导致电源被短路。
... 在切换不同步的单相交流负载时,会存在相位差,所以触点额定值应为负载电流的4倍,额定电压为负载电压的2倍。适合交流负载的触点不一定适合于几个电源相位之间的负载切换,必要时应进行相应的电寿命试验。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
二极管的选用基本方法
选用三极管要注意的几个方面:
(1)正向特性
另在二极管两端的正向电压(P为正、N为负)很小时(锗管小于0.1伏,硅管小于0.5伏),管子不导通处于“死区”状态,当正向电压起过一定数值后,管子才导通,电压再稍微增大,电流急剧暗加(见曲线I段)。不同材料的二极管,起始电压不同,硅管为0.5-.7伏左右,锗管为0.1-0.3左右。
(2)反向特性
  二极管两端加上反向电压时,反向电流很小,当反向电压逐渐增加时,反向电流基本保持不变,这时的电流称为反向饱和电流(见曲线II段)。不同材料的二极管,反向电流大小不同,硅管约为1微安到几十微安,锗管则可高达数百微安,另外,反向电流受温度变化的影响很大,锗管的稳定性比硅管差。
(3)击穿特性
  当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿(见曲线III)。这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。
(4)频率特性
由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
在变频器电路中,经常用到的光电耦合器件,有三种类型:
1、一种为三极管型光电耦合器,如PC816、PC817、4N35等,常用于开关电源电路的输出电压采样和误差电压放大电路,也应用于变频器控制端子的数字信号输入回路。结构最为简单,输入侧由一只发光二极管,输出侧由一只光敏三极管构成,主要用于对开关量信号的隔离与传输;
2、第二种为集成电路型光电耦合器,如6N137、HCPL2601等,输入侧发光管采用了延迟效应低微的新型发光材料,输出侧为门电路和肖基特晶体管构成,使工作性能大为提高。其频率响应速度比三极管型光电耦合器大为提高,在变频器的故障检测电路和开关电源电路中也有应用;
3、第三种为线性光电耦合器,如A7840。结构与性能与前两种光耦器件大有不同。在电路中主要用于对mV级微弱的模拟信号进行线性传输,在变频器电路中,往往用于输出电流的采样与放大处理、主回路直流电压的采样与放大处理。
& && &下图为三类光耦器件的引脚、功能原理图:
&&三种光耦合器电路图
本帖子中包含更多资源
才可以下载或查看,没有帐号?
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
定时器芯片555,556,之关的联系与区别
555 定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为 555,用 CMOS 工艺制作的称为 7555,除单定时器外,还有对应的双定时器 556/ 定时器的电源电压范围宽,可在 4.5V~16V 工作,7555 可在 3~18V 工作,输出驱动电流约为 200mA,因而其输出可与 TTL、CMOS 或者模拟电路电平兼容。 555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。555 定时器的内部包括两个电压比较器,三个等值串联电阻,一个 RS 触发器,一个放电管 T 及功率输出级。它提供两个基准电压VCC /3 和 2VCC /3 555 定时器的功能主要由两个比较器决定。两个比较器的输出电压控制 RS 触发器和放电管的状态。在电源与地之间加上电压,当 5 脚悬空时,则电压比较器 A1 的反相输入端的电压为 2VCC /3,A2 的同相输入端的电压为VCC /3。若触发输入端 TR 的电压小于VCC /3,则比较器 A2 的输出为 1,可使 RS 触发器置 1,使输出端 OUT=1。如果阈值输入端 TH 的电压大于 2VCC/3,同时 TR 端的电压大于VCC /3,则 A1 的输出为 1,A2 的输出为 0,可将 RS 触发器置 0,使输出为 0 电平。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
如何选用MOSFET驱动器?
 &&目前,现有的MOSFET技术和硅工艺种类繁多,这使得选择合适的MOSFET驱动器成了一个富有挑战性的过程。从功能上讲,MOSFET驱动器将逻辑信号转变成较高的电压和电流,以很短的响应时间驱动MOSFET栅极的开和关。例如,使用MOSFET驱动器可以将一个5V、低电流的单片机输出信号转变成一个18V、几安培的驱动信号来作为功率MOSFET的输入。针对应用选择正确的MOSFET驱动器,需要对与MOSFET栅极电荷和工作频率相关的功耗有透彻的理解。例如,不管栅极电压的转变快或慢,MOSFET栅极充电或放电时所需的能量是相同的。
  MOSFET驱动器的功耗性能由以下三个关键因素决定:
  1 MOSFET栅极电容的充电和放电引起的功耗;
  2 MOSFET驱动器静态电流引起的功耗;
  3 MOSFET驱动器内的交越导通(直通)电流引起的功耗。
  其中,由MOSFET栅极电容的充电和放电引起的功耗是最重要的,特别是当开关频率较低时。功耗由式(1)计算得出。
Pc=Cg×Vdd2×F& && && && &&&(1)
  其中,Cg是MOSFET的栅极电容;Vdd是MOSFET驱动器的工作电压(V);F是开关频率。
  峰值驱动电流的重要性
  除了功耗,设计人员必须理解MOSFET驱动器要求的峰值驱动电流和相关的开关时间。在某一应用中,MOSFET驱动器和MOSFET的匹配由该应用要求的功率MOSFET的开关速度决定。在任何应用中,最理想的上升或下降时间基于多方面的要求,如电磁干扰(EMI)、开关损耗、引线/电路感应系数和开关频率。栅极电容、转变时间和MOSFET驱动器的额定电流之间的关系由式(2)表示:
dT=[dV×C]/I& && && && && &(2)
  其中,dT是开/关时间;dV是栅极电压;C是栅极电容;I是MOSFET峰值驱动电流。
  MOSFET栅极总电容完全可以由栅极总电荷(QG)决定。栅极电荷QG由式(3)得出:
QG=C×V& && && && && && & (3)
  最后得出I=QG/dT。在这种方法中,假定电流是恒定的。有一个不错的经验是:电流的平均值等于MOSFET驱动器额定峰值电流的二分之一。
  MOSFET驱动器的功率由驱动器的输出峰值电流驱动能力决定。额定峰值电流通常是相对最大偏压而言的。这就是说,如果使用的MOSFET驱动器的偏压较低,那么它的峰值电流驱动能力也将被削弱。
  例如,所需的MOSFET峰值驱动电流可通过以下供应商数据手册中的设计参数计算得出。MOSFET栅极电荷为20nC(Q),MOSFET栅极电压为12V(dV),开/关时间为40ns(dT),可得I=0.5A。
  设计人员还可采用另外一种方法来选择合适的MOSFET驱动器,即时间恒定法。在这种方法中,用到了MOSFET驱动器电阻、任何一个外部栅极电阻和集中电容。
Tcharge=((Rdriver+Rgate)×Ctotal)×TC&&(4)
  这里,Rdriver是输出驱动器级的导通电阻(RDS-ON);Rgate是驱动器和MOSFET栅极间任何一个外部栅极电阻;Ctotal是栅极总电容;TC是时间常数的值。例如,Qtotal=68nC,Vgate=10V,Tcharge=50nsec,TC=3,Rgate=0Ω,Rdriver=(Tcharge/TC×Ctotal)-Rgate,可得Rdriver=2.45Ω。
  当式(4)表示一个R-C时间常数时,采用TC为3意味着充电后,电容充电量达到充电电压的95%。在栅极电压达到6V时,大多数的MOSFET完全处于“开”的状态。基于此,TC值为1时(即充电量达到充电电压的63%时)可能就满足应用需求了,并且允许使用额定电流更低的驱动器IC。
  电机控制应用中的MOSFET驱动器选择
  让我们来设计一个示例,即为电机控制应用选择一个MOSFET驱动器,在电机控制应用中,电机的速度和旋转方向是变化的。该应用要求用于电机的电压是可调的。通常,电机类型、功率开关拓扑和功率开关元件将指定必需的栅极驱动电路以实现这种要求。
  第一步是为该应用选择正确的功率开关元件,它由被驱动电机的额定功率来决定。一个需要考虑的重要参数是启动电流值,它的值最高可以达到稳态工作电流值的3倍。
 在电机驱动应用中,主要有两种功率开关元件可供选择——MOSFET和IGBT。如果选择MOSFET,那么就可以得出栅极驱动应用中MOSFET驱动器的额定功率。
  如图1所示,器件的输入级把输入的低电压信号转化成电压覆盖全范围(GND到Vdd)的信号。MOSFET Q1和Q2代表的是MOSFET驱动器的上拉和下拉输出驱动器级。将MOSFET驱动器的输出级看作MOSFET的一个推挽对,就容易理解它是如何工作的。
图1 MOSFET驱动器示例的电路框图
  对于同相驱动器,当输入信号变为高态时,Q1和Q2共同的栅极信号被拉低。该栅极节点的电压从Vdd转变到GND所需的时间通常少于10ns。这种快速转变抑制了在Q1和Q2之间产生交越导通的时间,并且使Q1迅速地达到其完全增强态,以尽快实现峰值电流。除图1的示例外,还有其他的MOSFET驱动器电路结构。
  当电机被驱动时,功率开关元件和栅极驱动电路是已知的,可以根据上面的公式(4)或公式(5)来选择MOSFET。
  使用电子数据表选择MOSFET驱动器
  当选定MOSFET后,可以使用由供应商提供的电子数据表(datasheet)来选择一个合适的MOSFET驱动器,这种便于使用的工具能快速地确定MOSFET驱动器所需峰值电流。
  首先,选择一个MOSFET,并将它的数据手册放在手边。现在,在正确的框中填入输入条件的值,例如MOSFET的源漏电压(Vds)、MOSFET的栅源电压(Vgs)、MOSFET驱动器电压(Vdd)、开关频率、占空比、预估的上升时间(tr)和栅极总电荷(QG)。于是就能计算出MOSFET驱动器的峰值输出电流IPK。根据IPK的值就能确定合适的、具有成本效益的MOSFET驱动器。选定MOSFET驱动器后,工具能够计算出器件的功耗和允许的最大工作环境温度,此处假定热损耗不计。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
如何区分热电偶和热电阻?热电阻与热电偶的区别
首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测量范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。
热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。
目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。
但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。
其次我们介绍一下热电阻,热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
热电偶选用方法
选择热电偶要根据使用温度范围、所需精度、使用气氛、测定对象的性能、响应时间和经济效益等综合考虑。
1、测量精度和温度测量范围的选择
使用温度在℃,要求精度又比较高时,一般选用B型热电偶;要求精度不高,气氛又允许可用钨铼热电偶,高于1800℃一般选用钨铼热电偶;使用温度在℃要求精度又比较高可用S型热电偶和N型热电偶;在1000℃以下一般用K型热电偶和N型热电偶,低于400℃一般用E型热电偶;250℃下以及负温测量一般用T型电偶,在低温时T型热电偶稳定而且精度高。
2、使用气氛的选择
S型、B型、K型热电偶适合于强的氧化和弱的还原气氛中使用,J型和T型热电偶适合于弱氧化和还原气氛,若使用气密性比较好的保护管,对气氛的要求就不太严格。
3、耐久性及热响应性的选择
线径大的热电偶耐久性好,但响应较慢一些,对于热容量大的热电偶,响应就慢,测量梯度大的温度时,在温度控制的情况下,控温就差。要求响应时间快又要求有一定的耐久性,选择铠装偶比较合适。
4、测量对象的性质和状态对热电偶的选择
运动物体、振动物体、高压容器的测温要求机械强度高,有化学污染的气氛要求有保护管,有电气干扰的情况下要求绝缘比较高。
选型流程:型号--分度号—防爆等级—精度等级—安装固定形式—保护管材质—长度或插入深度
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
TVS管与压敏电阻的比较
目前,国内不少需进行浪涌保护的设备上使用的是压敏电阻。压敏电阻是一种金属化物变阻器。TVS比压敏电阻的特性优越得多,具体特性参数的比较如下表所示。
------------------------------------------------------------------
关键参数或极限值&&|& && && && &TVS& && && & |& && &压敏电阻
--------------------|-------------------------|-------------------
反应速度& && && && &|& && && &&&10-12s& && &&&|& && & 5×10-8
--------------------|-------------------------|-------------------
有否老化现象& && &&&|& && && && & 否& && && & |& && && & 有
--------------------|-------------------------|-------------------
最高使用温度& && &&&|& && && && &175℃& && &&&|& && && &115℃
--------------------|-------------------------|-------------------
元件极性& && && && &|& && &&&单极性与双极性& &|& && && &单极性
-------------------|-------------------------|--------------------
反向漏电流典型值& & |& && && && &5μA& && && & |& && &&&200μA
--------------------|-------------------------|----------------------
箝位因子(VC/VBR)&&|& && && && &≤1.5& && &&&|& && &&&≥7~8
-------------------|-------------------------|----------------------
密封性质& && && && &|& && && &密封不透气& && &|& && && &透气
--------------------|-------------------------|---------------------
价格& && && && && & |& && && &&&较贵& && && & |& && &&&便宜
---------------------------------------------|----------------
--------------------------------------------------------------------------------
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
TVS管选用方法
1、& & 确定被保护电路的最大直流或连续工作电压、电路的额定标准电压和“高端”容限。
2、& & TVS额定反向关断VWM应大于或等于被保护电路的最大工作电压。若选用的VWM太低,器件可能进入雪崩或因反向漏电流太大影响电路的正常工作。串行连接分电压,并行连接分电流。
3、& & TVS的最大箝位电压VC应小于被保护电路的损坏电压。
4、& & 在规定的脉冲持续时间内,TVS的最大峰值脉冲功耗PM必须大于被保护电路内可能出现的峰值脉冲功率。在确定了最大箝位电压后,其峰值脉冲电流应大于瞬态浪涌电流。
5、& & 对于数据接口电路的保护,还必须注意选取具有合适电容C的TVS器件。
6、& & 根据用途选用TVS的极性及封装结构。交流电路选用双极性TVS较为合理;多线保护选用TVS阵列更为有利。
7、& & 温度考虑。瞬态电压抑制器可以在-55~+150℃之间工作。如果需要TVS在一个变化的温度工作,由于其反向漏电流ID是随增加而增大;功耗随TVS结温增加而下降,从+25℃到+175℃,大约线性下降50%雨击穿电压VBR随温度的增加按一定的系数增加。因此,必须查阅有关产品资料,考虑温度变化对其特性的影响。
8、& & 美国ProTek公司提供的TVS二极管,有下列不同的功率选择:
~500W:SA系列
~600W:P6KE、SMBJ系列
~1500W:1N9、1.5KE、LC、LCE系列
~5000W:5KP系列
~15000W:15KAP、15KP系列
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
常见光电耦合器型号及内部结构
下图是各种常见光电耦合器型号及内部结构图.
TLP512,TLP550,TLP581,TLP620-2,TLP620-4,TLP621-2,TLP621-4,TLP631等.
本帖子中包含更多资源
才可以下载或查看,没有帐号?
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
常见电容种类及性能比较
NPO陶瓷电容器
吸收<0?1%
外型尺寸小、价格便宜、稳定性好、电容值范围宽、 销售商多、电感低
通常很低,但又无法限制到很小的数值(10nF)
聚苯乙烯电容器 0?001%~0 ?02%
价格便宜、DA很低、电容值范围宽、稳定性好
温度高于85°C,电容器受到损害、外形尺寸大、电感高
聚丙烯电容器 0?001%~0?0 2%
价格便宜、DA很低、电容值范围宽
温度高于+105°C,电容器受到损害、外形尺寸大、电感
聚四氟乙烯电容器 0?003%~ 0?02%
DA很低、稳定性好、可在+125°C以上温度工作、电容值范围宽
价格相当贵、外形尺寸大、电感高
MOS电容器 0?01%
DA性能好,尺寸小,可在+25°C以上温度工作,电感低
限制供应、只提供小电容值
聚碳酸酯电容器 0?1%
稳定性好、价格低、温度范围宽
外形尺寸大、DA限制到8位应用、电感高
聚酯电容器 0?3%~0?5%
稳定性中等、价格低、温度范围宽、电感低
外形尺寸大、DA限制到8位应用、电感高
单片陶瓷电容器(高k值)>0?2%
电感低、电容值范围宽
稳定性差、DA性能差、电压系数高
云母电容器 >0?003%
高频损耗低、电感低、稳定性好、效率优于1%
外形尺寸很大、电容值低(<10nF)、价格贵
铝电解电容器 很高
电容值高、电流大、电压高、尺寸小
泄漏大、通常有极性、稳定性差、精度低、电感性
钽电解电容器 很高
尺寸小、电容值大、电感适中
泄漏很大、通常有极性、价格贵、稳定性差、精度差
本帖子中包含更多资源
才可以下载或查看,没有帐号?
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
开关电源滤波电感计算与选择
& & 本文将阐明为非隔离式开关电源(SMPS)选用电感的基本要点。所举实例适合超薄型表面贴装设计的应用,像电压调节模块(VRM)和负载点(POL)型电源,但不包括基于更大底板的系统。
图1&&典型的降压拓扑结构电源
& && & 图1所示为一个降压拓扑结构电源的架构,该构架广泛应用于输出电压小于输入电压的系统。在典型的降压拓扑结构电路中,当开关(Q1)闭合时,电流开始通过这个开关流向输出端,并以某一速率稳步增大,增加速率取决于电路电感。根据楞次定律,di=E*dt/L,流过电感的电流所发生的变化量等于电压乘以时间变化量,再除以这个电感值。由于流过负载电阻RL的电流稳定增加,输出电压成正比增大。
& && & 在达到预定的电压或电流限值时,控制集成电路将开关断开,从而使电感周围的磁场衰减,并使偏置二极管D1正向导通,从而继续向输出电路供给电流,直至开关再度接通。这一循环反复进行,而开关的次数由控制集成电路来确定,并将输出电压调控在要求的电压值上。图2所示为在若干个开关循环周期内,流过电感和其它降压拓扑电路元件上的电压和电流波形。
& && & 图2& &采用降压拓扑结构的开关电源的开关动作波形图
& && & 电感值对于在开关断开期间保持流向负载的电流很关键。所以必须算出保持降压变换器输出电流所必需的最小电感值,以确保在输出电压和输入电流处于最差条件下,仍能够为负载供应足够的电流。为确定最小的电感值,需要知道如下信息:
& && & ·输入电压范围
& && & ·输出电压及其规定范围
& && & ·工作频率(开关频率)
& && & ·电感纹波电流
& && & ·运行模式;连续运行模式还是非连续运行模式
表1 典型的降压电源系统技术规格
& && & 下列公式用于计算降压变换器所需的电感值:
& && && && && &L1 = Vo(1-Vo/(Vin-Von))/(f*dI)& && &
& && & 连续运行模式下:dI & 1/2I
& && & 为了算出适用于电源整个运行条件的最小电感值,对参数值的选择必须能够保证在各项参数处于最不利组合的条件下,所选择的这一电感值仍能将纹波电流保持在特定的数值范围内。而针对降压型电源,其最不利组合条件为:输入电压和频率均处于各自的最低数值时。此外,还要将输出电压也取为其最小规定值,以确定能够保持正常调节功能所需的最低电感值。设计者可以按照自己所习惯的方式,对这些数值进行控制,以达到最差条件成立的状态。
& && & 按照表1中所列出的数据,最小电感值计算如下:
L1(min) = Vo(min)(1-Vo(min)/(Vin(min)-Von))/(f(min)*dI)
L1(min) = 4.95V(1-4.95V/(20V-0.7V))/(693,000Hz * 0.5A)
L1(min) =&&10.6uh
因此,在这一具体应用中,电感的电感值至少为10.6 μh,而其电流额定值也要在最低的20安培的工作电流之上,并保持足够的安全系数。而如果选择一个电感值低于此最小值的电感,就将导致降压变换器可能无法在最大电流下将其输出电压保持在规定范围内。
& & 将电感值确定以后,实际电感的设计必须符合相关电气标准、系统尺寸和安装方式等限制。许多磁性元件供应商均提供各种型号的标准产品,可满足绝大多数的设计标准要求。但是,在设计中采用现货供应的标准产品,有可能导致电感的性能和尺寸方面有所不足,并可能最终对产品的销售造成不利影响。而幸运的是,包括泰科电子CoEv 磁性组件部在内的一些供应商,能够提供必要的定制工程设计支持, 以满足将特定电感值、电气性能和外形限制要求结合在一款完全成熟的产品上,促进设计的最优化。充分利用了业界的专业技术,从而最大程度地缩短了设计和测试的时间,加速产品的上市。
本帖子中包含更多资源
才可以下载或查看,没有帐号?
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
中小型断路器选择方法
常用断路器可分为配电型断路器、电机保护型断路器、家用保护型断路器、漏电断路器等,本文根据它们的保护特性不同,介绍了正确选择常用断路器依据的原则与方法以及怎样使用断路器,希望能够起到抛砖引玉的作用,避免因误选断路器带来的危害。
1 普通断路器的选择
配电(线路)、电动机和家用电器等的过电流保护断路器,因保护对象(如变压器、电线电缆、电动机和家用电器等)的承受过载电流的能力(包括电动机的起动电流和起动时间等)有差异,选用的断路器的保护特性不同。
1.1配电用断路器的选择
配电用断路器是指在低压电网中专门用于分配电能的断路器,包括电源总断路器和负载支路断路器。在选用这一类断路器时,需特别注意下列选用原则:
(1)断路器的长延时动作电流整定值≤导线容许载流量。对于采用电线电缆的情况,可取电线电缆容许载流量的80%。
(2)3倍长延时动作电流整定值的可返回时间≥线路中最大起动电流的电动机的起动时间。
(3)短延时动作电流整定值I1为:
I1=1.1(Ijx+1.35kIed)
式中:Ijx———线路计算负载电流(A);
k———电动机的起动电流倍数;
Ied———电动机额定电流(A)。
(4)瞬时电流整定值I2为:
I2=1.1(Ijx+klkIedm)
式中:kl———电动机起动电流的冲击系数,一般取kl=1.7~2;
Iedm———最大的一台电动机的额定电流。
(5)短延时的时间阶段,按配电系统的分段而定。一般时间阶段为2~3级。每级之间的短延时时差为0.1~0.2s,视断路器短延时机构的动作精度而定,其可返回时间应保证各级的选择性动作。选定短延时阶梯后,最好按被保护对象的热稳定性能加以校核。
1.2电动机保护型断路器的选择
微型断路器(MCB)不能用于对电动机的保护,只可作为替代熔断器对配电线路(如电线电缆)进行保护。电动机在起动瞬间有一个5~7倍Ied,持续时间为10s的起动电流,即使C特性在电磁脱扣电流设定为5~10倍Ied,可以保证在电动机起动时避过浪涌电流。
但对热保护来讲,其过载保护的动作值整定于1.45Ied,也就是说电动机要承受45%以上的过载电流时MCB才能脱扣,这对于只能承受&20%过载的电机定子绕组来讲,是极容易使绕组间的绝缘损坏的,而对于电线电缆来讲是可承受的。因此,在某些场合如确需用MCB对电机进行保护,可选用ABB公司特有的符合IEC947-2标准中K特性的MCB,或采用MCB外加热继电器的方式,对电动机进行过载和短路保护。
1.3家用保护型断路器的选择
MCB是建筑电气终端配电装置中使用最广泛的一种终端保护电器。应当像选用塑壳断路器和框架断路器一样,计算最大短路容量后再选择。
MCB的设计和使用是针对50~60Hz交流电网的,如用于直流电路,应根据制造厂商提供的磁脱扣动作电流同电源频率变化系数来换算;当环境温度大于或小于校准温度值时,必须根据制造厂商提供的温度与载流能力修正曲线来调整MCB的额定电流值。
低压配电线路的短路电流与该供电线路的导线截面、导线敷设方式、短路点与电源距离长短、配电变压器的容量大小、阻抗百分比等电气参数有关。
一般工业与民用建筑配电变压器低压侧电压多为0.23/0.4kV,变压器容量大多为1600kVA及以下,低压侧线路的短路电流随配电容量增大而增大。对于不同容量的配变,低压馈线端短路电流是不同的。一般来说,对于民用住宅、小型商场及公共建筑,由于由当地供电企业的低压电网供电,供电线路的电缆或架空导线截面较细,用电设备距供电电源距离较远,选用4.5kA及以上分断能力的MCB即可。
对于有专供或有10kV变配电站的用户,往往因供电线路的电缆截面较粗,供电距离较短,应选用6kA及以上额定分断能力的MCB。而对于如变配电站(站内使用的照明、动力电源直接取自于低压总母排)以及大容量车间变配电站(供车间用电设备)等供电距离较短的类似场合,则必须选用10kA及以上分断能力的MCB,具体选用时特别要注意:MCB的额定分断能力是在上端子进线、下端子出线状态下测得的。
在工程中若遇到特殊情况下要求下端子进线、上端子出线,由于开断故障电流时灭弧的原因,MCB必须降容使用,即额定分断能力必须按制造厂商提供的有关降容系数来换算。MCB的保护特性根据IEC898分为A、B、C、D四种特性供用户选用:A特性一般用于需要快速、无延时脱扣的使用场合,亦即用于较低的峰值电流值(通常是额定电流In的2~3倍),以限制允许通过短路电流值和总的分断时间,利用该特性可使MCB替代熔断器作为电子元器件的过流保护及互感测量回路的保护;B特性用于需要较快速度脱扣且峰值电流不是很大的使用场合。
与A特性相比较,B特性允许通过的峰值电流&3In,一般用于白炽灯、电加热器等电阻性负载及住宅线路的保护;C特性适用于大部分的电气回路,它允许负载通过较高的短时峰值电流而MCB不动作,C特性允许通过的峰值电流&5In,用于荧光灯、高压气体放电灯、动力配电系统的线路保护;D特性适用于很高的峰值电流(&10In)的断路器设备,可用于交流额定电压与频率下的控制变压器和局部照明变压器的一次线路和电磁阀的保护。
2漏电断路器的选择
2.1普通漏电断路器的选择。
选择漏电断路器要遵循以下原则:
(1)断路器的额定电压、电流应大于或等于线路设备的正常工作电压和电流;
(2)线路应保护的漏电电流应小于或等于断路器的规定漏电保护电流;
(3)断路器的极限通断能力应大于或等于电路最大短路电流;
(4)过载脱扣器的额定电流大于或等于线路的最大负载电流;
(5)有较短的分断反应时间,能够起到保护线路和设备的作用。
2.2四极断路器的选用
是否选用四极断路器可遵循以下原则:
(1)根据IEC465.1.5条规定,正常供电电源与备用发电机之间的转换断路器应使用四极断路器;
(2)带漏电保护的双电源转换断路器应采用四极断路器。两个上级断路器带漏电保护,其下级的电源转换断路器应使用四极断路器;
(3)在两种不同接地系统间电源切换断路器应采用四极断路器;
(4)TN-C系统严禁使用四极断路器;
(5)TN-S、TN-C-S系统一般不需要设置四极断路器。但TN-S系统的一些特殊情况(严重三相不平衡、零序谐波含量较高等)是否不用四极断路器有待进一步研究;
(6)TT系统的电源进线断路器应采用四极断路器;
(7)IT系统中当有中性线引出时应采用四极断路器。
3断路器的使用
断路器在使用过程中我们要注意:
(1)电路接好后,应检查接线是否正确。可通过试验按钮加以检查。如断路器能正确分断,说明漏电保护器安装正确,否则应检查线路,排除故障。在漏电保护器投入运行后,每经过一段时间,用户应通过试验按钮检查断路器是否正常运行;
(2)断路保护器的漏电、过载、短路保护特性是由制造厂设定的,不可随意调整,以免影响性能;试验按钮的作用在于断路器在新安装或运行一定时期后,在合闸通电的状态下对其运行状态进行检查。按动试验按钮,断路器能分断,说明运行正常,可继续使用;
(3)如断路器不能分断,说明断路器或线路有故障,需进行检修;
(4)断路器因被保护电路发生故障(漏电、过载或短路)而分断,则操作手柄处于脱扣位置(中位置)。查明原因排除故障后,应先将操作手柄向下扳(即置于“分”位置),使操作机构“再扣”后,才能进行合闸操作(请注意断路器操作手柄三个位置的不同含义);
(5)断路器因线路短路断开后,需检查触头,若主触头烧损严重或有凹坑时,需进行维修;
(6)四极漏电断路器必须接入零线,以使电子线路正常工作;
(7)漏电断路器的负载接线必须经过断路器的负载端,不允许负载的任一相线或零线不经过漏电断路器,否则将产生人为“漏电”而造成断路器合不上闸,造成“误动”。此外,为了更加有效地保护线路和设备,可以将漏电断路器与熔断器配合使用。
(1)电源进线断路器中性线的隔离不是为了防三相回路内中性线不平衡电流引起的中性线过流或这种过流引起的人身*危险,而是为了消除沿中性线导入的故障电位对电气检修人员的*危险;
(2)为减少三相回路“断零”事故的发生,应尽量避免在中性线上装设不必要的断路器触头,即在保证电气检修安全条件下,尽量少装用四极断路器;
(3)不论建筑物内有无总等电位联结,TT系统电源进线断路器应实现中性线和相线的同时隔离,但有总等电位联结的TN-S系统和TN-C-S系统建筑物电气装置无此需要;
(4)TT系统内的RCD应能同时断开相线和中性线,以防发生两个故障时引起的*事故,但对TN系统内的漏电保护器RCD没有此要求;
(5)除带漏电保护功能的电源转换断路器外,其他电源转换断路器无需隔离中性线;
(6)不论何种接地系统,单相电源进线断路器都应能同时断开相线和中性线。
在线时间2042 小时
威望50340 分
芯币36072 枚
TA的帖子TA的资源
漏电断路器的选择
1.普通漏电断路器的选择
选择漏电断路器要遵循以下原则:
(1)断路器的额定电压、电流应大于或等于线路设备的正常工作电压和电流;
(2)线路应保护的漏电电流应小于或等于断路器的规定漏电保护电流;
(3)断路器的极限通断能力应大于或等于电路最大短路电流;
(4)过载脱扣器的额定电流大于或等于线路的最大负载电流;
(5)有较短的分断反应时间,能够起到保护线路和设备的作用。
2.四极断路器的选用
是否选用四极断路器可遵循以下原则:
(1)根据IEC465.1.5条规定,正常供电电源与备用发电机之间的转换断路器应使用四极断路器;
(2)带漏电保护的双电源转换断路器应采用四极断路器。两个上级断路器带漏电保护,其下级的电源转换断路器
& &应使用四极断路器;
(3)在两种不同接地系统间电源切换断路器应采用四极断路器;
(4)TN-C系统严禁使用四极断路器;
(5)TN-S、TN-C-S系统一般不需要设置四极断路器。但TN-S系统的一些特殊情况(严重三相不平衡、零序谐波含
& &量较高等)是否不用四极断路器有待进一步研究;
(6)TT系统的电源进线断路器应采用四极断路器;
(7)IT系统中当有中性线引出时应采用四极断路器。
资源大师勋章
在下载中心贡献超过4000份资料
Powered by
逛了这许久,何不进去瞧瞧?

我要回帖

更多关于 基本放大电路 的文章

 

随机推荐