打夯机价格电机哄哄响就是不转

立式打夯机,用一段时间后,电机发热漏保跳闸(漏保好的)。冷却后又能用一段时间,请问是不是电机绝缘值小..._百度知道
立式打夯机,用一段时间后,电机发热漏保跳闸(漏保好的)。冷却后又能用一段时间,请问是不是电机绝缘值小...
用一段时间后,电机发热漏保跳闸(漏保好的)。冷却后又能用一段时间,请问是不是电机绝缘值小了和过载了立式打夯机
换一下稍大一点的漏保,就调一下,电机过载了,就可以了,原来电机也热,机械性能差了,不能调就保养一下打夯机,漏保如果可以调整是用老了,就是不跳闸不注意就是了
其他类似问题
您可能关注的推广回答者:回答者:
跳闸的相关知识
其他2条回答
现在的电机实在不敢恭维啊!以前的都是铜漆包线,现在好多都是铝漆包线啊!
你好:——★这台电动机的绝缘已经到了临界点,该维修了......根据电机绝缘性能的解释,电机绝缘电阻会随温度的上升而呈下降的趋势。很明显,这台电机的绝缘已经到了使漏电保护器动作的极限了,应当立即维修,以免(因保护器失灵)发生不测。
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁如图所示是建筑工地常用的一种“深穴打夯机”.工作时,电动机带动两个紧压夯杆的滚轮匀速转动将夯杆从深_百度知道
如图所示是建筑工地常用的一种“深穴打夯机”.工作时,电动机带动两个紧压夯杆的滚轮匀速转动将夯杆从深
滚轮与夯杆间的动摩擦因数μ=0,坑深h=6,当两个滚轮彼此分开时.baidu:(1)夯杆上升过程中被滚轮释放时的速度为多大.hiphotos.baidu,求,电动机带动两个紧压夯杆的滚轮匀速转动将夯杆从深为h的坑中提上来?此时夯杆底端离坑底多高://g,且夯杆底端升到坑口时,最后夯在自身重力作用下.com/zhidao/pic/item/37d12f2eba0ee38635e5dde6116ebe,夯实坑底.然后两个滚轮再次压紧,夯杆再次被提上来.4m.假定在打夯的过程中坑的深度变化及夯与坑底的作用时间均忽略不计.jpg" />如图所示是建筑工地常用的一种“深穴打夯机”.工作时.jpg" esrc="http<img class="ikqb_img" src="http://g,速度恰好为零.取g=10m/s2.com/zhidao/wh%3D600%2C800/sign=5e240a81b9a1cd922e4c4/37d12f2eba0ee38635e5dde6116ebe,夯杆被释放,落回深坑,夯杆质量m=1×103kg,如此周而复始工作.已知两个滚轮边缘线速度v恒为4m/s.3://g
我有更好的答案
按默认排序
1)匀加速阶段.6m(2)打夯周期是3:wordWrap:90%">22×10m=0,此时夯杆底端离坑底5;wordSpacing:1px solid black">va=<td style="border-bottom: normal.4s匀减速阶段;padding-bottom:1px:1px"><td style="border-bottom:v=at1t1==2s匀速阶段:(1)夯杆上升过程中被滚轮释放时的速度为4m/s;font-size:90%">4<span style="vertical-align:h-h1-h2=vt3t3=0;font-size:90%">4<span style="vertical-font-size.93s答;wordWpadding-bottom:1px solid black: 90%">24t4=1;font-size:wordWrap:t=t1+t2+t3+t4得t=3.13s总时间:v=gt2解得t2=2s下落阶段;wordSpacing:22a=<span style="vertical-align: 1px:1px solid black:1px,因此;wordSpacing:nowrap:1px">2=v1=22×2m=4m匀减速阶段上升高度:2g<span style="vertical-align:nowrap:nowrap
其他类似问题
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁当前位置:
>>>如图所示是建筑工地常用的一种“深穴打夯机”。工作时,电动机带动..
如图所示是建筑工地常用的一种“深穴打夯机”。工作时,电动机带动两个紧压夯杆的滚轮匀速转动将夯从深为h的坑中提上来,当两个滚轮彼此分开时,夯杆被释放,最后夯在自身重力作用下,落回深坑,夯实坑底。然后,两个滚轮再次压紧,夯杆再次被提上来,如此周而复始工作。已知两个滚轮边缘线速度v恒为4 m/s,每个滚轮对夯杆的正压力FN为2×104N,滚轮与夯杆间的动摩擦因数为0.3,夯杆质量m为1×103 kg,坑深h为6m。假定在打夯的过程中坑的深度变化不大,且夯杆底端升到坑口时,速度正好为零,取g=10m/s2,求:(1)每个打夯周期中,电动机对夯杆所做的功;(2)夯杆上升过程中被滚轮释放时夯杆底端离坑底多高;(3)打夯周期。
题型:计算题难度:偏难来源:模拟题
解:(1)因为夯杆底端升到坑口时,速度正好为零,所以每个打夯周期中,电动机对夯杆所做的功W=mgh=6×104 J&&(2)根据题意,考虑到夯杆先匀加速上升,后匀速上升,再竖直上抛当夯杆以v=4 m/s的初速度竖直上抛,上升高度为:0.8 m此时夯杆底端离坑底△h=h-h3=5.2 m(3)以夯杆为研究对象f1=2μN=1.2×104 N;2m/s2当夯杆与滚轮相对静止时:v=a1t1=4m/s,t1=2s,h1=则当夯杆加速向上运动速度达到v=4 m/s后,夯杆匀速上升,匀速上升高度为:h2=h-h1-h3=1.2m因此,夯杆上抛运动的时间为:夯杆匀速上升的时间为:夯杆自由落体的时间为:故打夯周期为:T=t1+t2+t3+t4=3.8 s
马上分享给同学
据魔方格专家权威分析,试题“如图所示是建筑工地常用的一种“深穴打夯机”。工作时,电动机带动..”主要考查你对&&竖直上抛运动,自由落体运动,牛顿运动定律的应用,功&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
竖直上抛运动自由落体运动牛顿运动定律的应用功
竖直上抛运动:
将物体以一定初速度沿竖直方向向上抛出,物体只在重力作用下运动(不考虑空气阻力作用),叫做竖直上抛运动。
竖直上抛运动的公式:vt=v0-gt;h=v0t-gt2;速度位移公式:vt2-v02=-2gh。
运动特征:
①运动到最高点v=0,a=-g(取竖直向下方向为正方向); ②能上升的最大高度hmax=; ③质点在通过同一高度位置时,上升速度与下落速度大小相等;物体在通过一段高度过程中,上升时间与下落时间相等,。 ④物体只受重力作用,具有竖直向上的初速度。
运动性质:
初速度不为零的匀变速直线运动。竖直上抛的处理方法:
1、分段处理法:
①上升阶段:已知v0,a=-g,vt=0的匀减速直线运动,取向上为正方向较方便。所以运动规律为&&&&,,&&& 故,上升时间,最大高度。
②最高点v=0,可是不处于静止状态,因为a=g。
③下降阶段:自由落体运动,取向下为正方向较方便。&&&&&&
2、对称性:
①竖直上抛的物体上抛达到最大高度与从这一高度落回抛出点所用的时间相等。
②竖直上抛物体在上升和下落过程中经过同一位置时的速度大小相等方向相反。
3、V-t图像:
4、整体分析法:
将全过程看成是加速度为-g的匀变速直线运动,应用公式,
(1)s为正,表示质点在抛出点的上方,s为负表示在抛出点的下方。
(2)由同一s求出的t、可能有两个解,要注意分清其意义。
(3)算出的vt>0表示物体在向上过程中,vt<0表示物体在向下过程中;s>0表示物体在抛出点上方,s<0表示物体在抛出点下方.
&自由落体运动:物体只在重力作用下从静止开始下落的运动叫做自由落体运动。
自由落体运动的公式:v=gt;h=gt2;v2=2gh。
运动性质:自由落体运动是初速度为零的匀加速直线运动。
自由落体加速度:在同一地点,一切物体在自由落体运动中的加速度都相同,这个加速度叫自由落体加速度,也叫重力加速度。物体做自由落体运动的条件:
①只受重力而不受其他任何力,包括空气阻力。②从静止开始下落。
重力加速度g:
①方向:总是竖直向下的。②大小:g=9.8m/s2,粗略计算可取g=10m/s2③在地球上不同的地方,g的大小不同.g随纬度的增加而增大(赤道g最小,两极g最大),g随高度的增加而减小。知识点拨:
自由落体运动的规律:自由落体运动是初速度为零的匀加速直线运动,所以,匀变速直线运动公式也适用于自由落体运动。小知识--重力加速度:
①把地球当做旋转椭球,重力加速度计算公式为:g=9..0052884-0.00000592)m/s2&&&& 式中为物体所在处的地理纬度②重力加速度还和物体离地面的高度h有关。当h远小于地球半径R时,
小知识—空气阻力:
空气阻力是物体在空气中运动时受到的阻力。空气阻力的大小与物体相对于空气的速度、物体的形状等都有很大的关系。牛顿运动定律的应用:1、牛顿运动定律牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma。牛顿第三定律:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。2、应用牛顿运动定律解题的一般步骤①认真分析题意,明确已知条件和所求量;②选取研究对象,所选取的研究对象可以是一个物体,也可以是几个物体组成的系统,同一题,根据题意和解题需要也可先后选取不同的研究对象;③分析研究对象的受力情况和运动情况;④当研究对对象所受的外力不在一条直线上时;如果物体只受两个力,可以用平行四力形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上,分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动方向上;⑤根据牛顿第二定律和运动学公式列方程,物体所受外力,加速度、速度等都可以根据规定的正方向按正、负值代公式,按代数和进行运算;⑥求解方程,检验结果,必要时对结果进行讨论。牛顿运动定律解决常见问题:Ⅰ、动力学的两类基本问题:已知力求运动,已知运动求力①根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况;根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。②分析这两类问题的关键是抓住受力情况和运动情况的桥梁——加速度。③求解这两类问题的思路,可由下面的框图来表示。Ⅱ、超重和失重物体有向上的加速度(向上加速运动时或向下减速运动)称物体处于超重,处于超重的物体对支持面的压力FN(或对悬挂物的拉力)大于物体的重力mg,即FN=mg+ma;物体有向下的加速度(向下加速运动或向上减速运动)称物体处于失重,处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg,即FN=mg-ma。Ⅲ、连接体问题连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统。处理方法——整体法与隔离法:当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。Ⅳ、瞬时加速度问题①两种基本模型&&&&&&& 刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。&&&&&&& 轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。②解决此类问题的基本方法a、分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);b、分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);c、求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。Ⅴ、传送带问题分析物体在传送带上如何运动的方法①分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。具体方法是:a、分析物体的受力情况&&&&&&& 在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。b、明确物体运动的初速度&&&&&&& 分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。c、弄清速度方向和物体所受合力方向之间的关系&&&&&&& 物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。②常见的几种初始情况和运动情况分析a、物体对地初速度为零,传送带匀速运动(也就是将物体由静止放在运动的传送带上)&&&&&&& 物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。(以下的说明中个字母的意义与此相同)&&&&&&& 物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。其加速度由牛顿第二定律,求得;&&&&&&& 在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。b、物体对地初速度不为零其大小是V20,且与V的方向相同,传送带以速度V匀速运动(也就是物体冲到运动的传送带上)&&&&&&& 若V20的方向与V的方向相同且V20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V20的匀加速运动,直至与传送带达到共同速度匀速运动。&&&&&&& 若V20的方向与V的方向相同且V20大于V,则物体相对于传送带向前运动,它受到的摩擦力方向向后,如图2所示,摩擦力f的方向与初速度V20方向相反,物体相对于地做初速度是V20的匀减速运动,一直减速至与传送带速度相同,之后以V匀速运动。c、物体对地初速度V20,与V的方向相反&&&&&&& 如图3所示:物体先沿着V20的方向做匀减速直线运动直至对地的速度为零。然后物体反方向(也就是沿着传送带运动的方向)做匀加速直线运动。&&&&&&& 若V20小于V,物体再次回到出发点时的速度变为-V20,全过程物体受到的摩擦力大小和方向都没有改变。&&&&&&& 若V20大于V,物体在未回到出发点之前与传送带达到共同速度V匀速运动。&&&&&&& 说明:上述分析都是认为传送带足够长,若传送带不是足够长的话,在图2和图3中物体完全可能以不同的速度从右侧离开传送带,应当对题目的条件引起重视。物体在传送带上相对于传送带运动距离的计算①弄清楚物体的运动情况,计算出在一段时间内的位移X2。②计算同一段时间内传送带匀速运动的位移X1。③两个位移的矢量之△X=X2-X1就是物体相对于传送带的位移。说明:传送带匀速运动时,物体相对于地的加速度和相对于传送带的加速度是相同的。传送带系统功能关系以及能量转化的计算物体与传送带相对滑动时摩擦力的功①滑动摩擦力对物体做的功由动能定理,其中X2是物体对地的位移,滑动摩擦力对物体可能做正功,也可能做负功,物体的动能可能增加也可能减少。②滑动摩擦力对传送带做的功由功的概念得,也就是说滑动摩擦力对传送带可能做正功也可能做负功。例如图2中物体的速度大于传送带的速度时物体对传送带做正功。说明:当摩擦力对于传送带做负功时,我们通常说成是传送带克服摩擦力做功,这个功的数值等于外界向传送带系统输入能量。③摩擦力对系统做的总功等于摩擦力对物体和传送带做的功的代数和。即结论:滑动摩擦力对系统总是做负功,这个功的数值等于摩擦力与相对位移的积。④摩擦力对系统做的总功的物理意义是:物体与传送带相对运动过程中系统产生的热量,即。4、应用牛顿第二定律时常用的方法:整体法和隔离法、正交分解法、图像法、临界问题。功:
1、功的定义:力和作用在力的方向上通过的位移的乘积。是描述力对空间积累效应的物理量,是过程量。 2、功的两个必要因素:作用在物体上的力;物体在力的方向上发生的位移。 3、功的定义式:W=Fscosα,其中F是恒力,s是作用点的位移,α是力与位移间的夹角(功的单位焦耳,简称焦,符号J)。4、功的计算 ①恒力的功可根据W=FScosα进行计算,本公式只适用于恒力做功; ②根据W=P·t,计算一段时间内平均做功; ③利用动能定理计算力的功,特别是变力所做的功; ④根据功是能量转化的量度反过来可求功。 力做功情况的判定方法:
一个力对物体做不做功,是做正功还是做负功,判断的方法是: (1)看力与位移之间的夹角,或者看力与速度之间的夹角:为锐角时,力对物体做正功;为钝角时,力对物体做负功;为直角时,力对物体不做功。 (2)看物体间是否有能量转化:若有能量转化,则必定有力做功。此方法常用于相连的物体做曲线运动的情况。变力做功的求法:
公式只适用于求恒力做功,即做功过程中F的大小、方向始终不变。而实际问题中变力做功是常见的,如何解答变力做功问题是学习中的一个难点。不能机械地套用这一公式,必须根据有关物理规律通过变换或转化来求解。 1.用求变力做功如果物体受到的力方向不变,且大小随位移均匀变化,可用求变力F所做的功。其平均值大小 为,其中F1是物体初态时受到的力的值,F2是物体末态时受到的力的值。如在求弹簧弹力所做的功时,再如题目中假定木桩、钉子等所受阻力与击入深度成正比的情况下,都可以用此法求解。 2.用微元法(或分段法)求变力做功变力做功时,可将整个过程分为几个微小的阶段,使力在每个阶段内不变,求出每个阶段内外力所做的功,然后再求和。当力的大小不变而方向始终与运动方向间的夹角恒定时,变力所做的功形:其中s是路程。3.用等效法求变力做功若某一变力做的功等效于某一恒力做的功,则可以应用公式来求。这样,变力做功问题就转化为了恒力做功问题。4.用图像法求变力做功存F—l图像中,图线与两坐标轴所围“面积”的代数和表示F做的功,“面积”有正负,在l轴上方的“面积”为正,在l轴下方的“面积”为负。5.应用动能定理求变力做功如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能变化量也比较容易计算时,用动能定理就可以求出这个变力所做的功。 6.利用功能关系求变力做功在变力做功的过程中,当有重力势能、弹性势能以及其他形式的能量参与转化时,可以考虑用功能关系求解。因为做功的过程就是能量转化的过程,并且转化过程中能量守恒。7.利用W=Pt求变力做功这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是恒定的。若功率P是变化的,则需用计算,其中当P随时间均匀变化时,。
发现相似题
与“如图所示是建筑工地常用的一种“深穴打夯机”。工作时,电动机带动..”考查相似的试题有:
228676222325267104440975298951370359当前位置:
>>>如图所示是建筑工地常用的一种“深穴打夯机”.工作时,电动机带动两..
如图所示是建筑工地常用的一种“深穴打夯机”.工作时,电动机带动两个紧压夯杆的滚轮匀速运转将夯杆从深为h的坑中提上来,当两个滚轮彼此分开时,夯杆被释放,最后夯杆在自身的重力作用下,落回深坑夯实坑底.然后,两个滚轮再次压紧夯杆,夯杆再次被提上来,如此周而复始工作.已知两个滚轮的半径为R=40cm,角速度ω=10rad/s,每个滚轮对夯杆的正压力FN=2×104&N,滚轮与夯杆的动摩擦因数u=0.3,夯杆质量m=1×103&kg,坑深h=6.4m.假定在打夯的过程中坑的深度不变,且夯杆底端刚到坑口时,速度恰好为零.取g=10m/s2,2=1.4.求:(1)夯杆上升过程中被滚轮释放时的速度为多大;此时夯杆底端离坑底多高;(2)每次打夯的周期为多少.
题型:问答题难度:中档来源:不详
(1)根据牛顿第二定律得,2f-mg=ma解得a=2f-mgm=2×0.3×2×104-1×1041×103m/s2=2m/s2.设夯杆上升过程中被滚轮释放时的速度为v,根据h=v22a+v22g,解得v=833m/s.因为滚轮的线速度v=Rω=4m/s<833m/s.所以夯杆上升过程中经历了匀加速直线运动,匀速直线运动和匀减速直线运动.夯杆上升过程中被滚轮释放时的速度为4m/s.此时夯杆底端离坑底的高度h1=v22a=164m=4m.(2)夯杆上升过程中经历了匀加速直线运动,匀速直线运动和匀减速直线运动.向上匀加速直线运动的时间t1=va=42s=2s,匀减速直线运动的时间t3=vg=0.4s匀减速直线运动的位移h3=v22g=1620m=0.8m则匀速直线运动的位移h2=h-h1-h3=6.4-4-0.8m=1.6m则匀速运动的时间t2=h2v=1.64s=0.4s.自由落体运动阶段h=12gt42,解得t4=2hg=12.810s=0.82s=1.12s则打夯的周期为T=t1+t2+t3+t4=3.92s答:(1)夯杆上升过程中被滚轮释放时的速度为4m/s;此时夯杆底端离坑底4m.(2)每次打夯的周期为3.92s.
马上分享给同学
据魔方格专家权威分析,试题“如图所示是建筑工地常用的一种“深穴打夯机”.工作时,电动机带动两..”主要考查你对&&匀变速直线运动的位移与时间的关系,牛顿第二定律&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
匀变速直线运动的位移与时间的关系牛顿第二定律
匀变速直线运动的位移公式:
由平均速度的定义和匀变速直线运动的平均速度及速度公式,联立推导出匀变速直线运动的位移公式:知识点拨:
1、是匀变速直线运动位移的一般表示形式.它能表明质点在各个时刻相对初始时刻(t=0)的位移。2、在位移公式中s、v0、a均是矢量,解题时一般要选取v0方向为正。3、位移公式可由速度图象来推导,
如图是某物体做匀变速直线运动的图象.根据图象的物理意义,它与横轴(时间轴)所围的那块梯形面积表示运动的位移.所以:内容:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F合=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。对牛顿第二定律的理解:①模型性牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。②因果性力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。③矢量性合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。④瞬时性加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。⑤同一性(同体性)中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。⑥相对性在中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。⑦独立性F合产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:。⑧局限性(适用范围)牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。牛顿第二定律的应用: 1.应用牛顿第二定律解题的步骤: (1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。 (2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。 (3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 (4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。2.两种分析动力学问题的方法: (1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。 (2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。 ①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。 ②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。3.应用牛顿第二定律解决的两类问题: (1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下: (2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。知识扩展:1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。 2.关于a、△v、v与F的关系 (1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。 (2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。 (3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。
发现相似题
与“如图所示是建筑工地常用的一种“深穴打夯机”.工作时,电动机带动两..”考查相似的试题有:
289801230029153227294639264942162991

我要回帖

更多关于 打夯机价格 的文章

 

随机推荐