谈谈基因测序原理技术经历了哪几个发展阶段,这些技术的特点分别是什么

DNA测序技术_百度百科
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
DNA测序技术
,即测定DNA序列的技术。在分子生物学研究中,DNA的序列分析是进一步研究和改造目的基因的基础。目前用于测序的技术主要有Sanger等(1977)发明的双脱氧链末端终止法和 Maxam和 Gilbert(1977)发明的化学降解法。这二种方法在原理上差异很大,但都是根据核苷酸在某一固定的点开始,随机在某一个特定的碱基处终止,产生 A,T,C,G四组不同长度的一系列核苷酸,然后在尿素变性的PAGE胶上电泳进行检测,从而获得DNA序列。目前 Sanger测序法得到了广泛的应用。
DNA测序技术简介
技术,又叫基因测序技术。
这部由A、T、G、C四个字母组成的卷帙浩繁的生命天书如同一座宝库,保藏着几千年来人们迫切想知道的秘密,DNA测序技术就好似“芝麻开门”这样的咒语,是我们打开宝库的金钥匙世界上第一个测定DNA序列的方法是由英国生化学家弗雷德里克·桑格尔发明的。自此DNA测序的速度就一直呈加速态势。2001年人类基因组草图耗资4.37亿美元,耗时13年。到了2007年,第一个完整人类基因组的诞生只花费了150万美元,3个月就搞定。日,美国加州太平洋生物科学公司的科学家乔纳斯·考尔拉赫、斯蒂芬·特纳及其研究小组在《科学》杂志上发表论文称,他们将纳米技术与芯片技术相结合,发明了一种新型测序方法,速度是现有技术的3万倍。
DNA测序技术DNA sequencing technology
Sanger 法测序的原理就是利用一种来延伸结合在待定序列模板上的。直到掺入一种链终止为止。每一次由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率分离大小不同的片段,凝胶处理后可用X- 光胶片或非进行检测。
DNA测序技术非同位素银染测序系统操作技术
Promega公司的SILVER SEQUENCETM DNA测序系统是一种无放射性的序列分析系统,它通过灵敏的方法检测凝胶中的条带。银染提供了一种对于或荧光法来说更加快速,廉价的替代方法。测序结果可以在同一天内得到;完成后经90分钟就可读序,这是常规的放射性测序法做不到的。 此外, SILVER SEQUENCETM系统用未修饰的5'OH寡聚核苷酸作为引物,减少了特殊修饰寡聚核苷酸的花费。该系统不需要放射性方法中对的谨慎操作,也不需要荧光法或化学发光技术的昂贵试剂。另外,也不需要象大多数荧光法那样用仪器来检测序列条带。
DNA测序策略
Taq DNA聚合酶在95℃时极强的热稳定性。本系统利用的测序级Taq DNA聚合酶是一种Taq DNA聚合酶的修饰产品,对于双链DNA模板有非常好的效果,具有高度的准确性,能产生均一的条带,且背景低。
SILVER SEQUENCETM系统包含被修饰的核苷酸混合物,如7-去氮dGTP(7-deaza dGTP,或dITP)替代dGTP可清除由GC丰富区域所引起的条带压缩现象。
是热循环测序中最重要的因素。高退火温度可减少模板二级结构。提高结合模板配对的严谨性。链和模板二级结构则限制了小片断PCR产物(&500bp)得到清楚的序列数据的能力。起始于每个循环的退火阶段。在较低温度时,可能会遇到坚固的二级结构区域,它可导致聚合酶解离。则在四个电泳道中均有同一相对位置的条带。因为这些原因,应该使用尽可能高的退火温度。对于有牢固二级结构的模板建议使用95℃变性、70℃退火/延伸的循环模式。一般来说,较长的引物及GC含量高的引物能得到较强的信号。实验结果表明,&24mer的GC含量约为50%的引物可得到最佳结果。
由于本系统采用热循环装置, 与常规的测序方法相比具有如下几点好处:(1).本方法线性扩增模板DNA产生足够的产物使技术能够检测序列条带,测序反应需要0.03-- 2pmol模板DNA, 随模板种类而定。(2). 在每一个变性循环中的高温可以取代对双链DNA(dsDNA)模板的碱变性及乙醇沉淀过程,变性循环也有助于消除由于线性dsDNA模板(如PCR反应产物)快速所引起的问题。(3). 高温反应减弱了DNA模板的,允许聚合酶穿过高度二级结构化的区域。
DNA测序技术材料
待测已提纯的DNA,可为单链,也可为。
科学家在一个蚀刻有的微阵列芯片上放置了数以千计的波导管。这是一种微型、中空的金属管,直径大约20纳米,体积大约是1毫微微微升,一个DNA分子外加一个DNA多聚酶分子便可将管内空间占满。这样一来,仅在一块小小的芯片上,就能同时进行数千个测序反应。尤其可贵的是,在这种微型波导管中进行测序反应时,干扰会显著减少,也就是说可以大幅提高精确度。
目前的产品中,每个芯片上的波导管大约有3000个,太平洋生物科学公司打算2010年推出这一级别的产品。据公司创始人特纳预计,到2013年,将实现每张芯片放置一百万个波导管,届时将能在半小时内测完全序列,精确度达到99.999%,花费低于1000美元。
尽管美国得克萨斯州贝勒医学院的迈克尔·梅兹克博士表示特纳的展望过于乐观,但这样惊人的速度让我们仿佛看到了计算机CPU曾经的前进步伐——集成电路上容纳的晶体管数目,每18个月就会增加一倍,性能也将提升一倍。有人评论道,DNA测序技术将跟随计算机技术和通讯技术成为第三个“摩尔定律化”的学科产业。
DNA测序技术设备
DNA测序仪,性能特点,自动化程度高,提供连续、无需监控的操作,自动灌胶、上样、电泳分离、检测及数据分析,可连续运行24小时无需人工干预。分析量大,一束毛细管可同时对16个样品进行全自动分析,一天可完成数百个样品的测序或片段分析工作。先进的荧光检测系统,采用光栅分光,CCD摄像机成像技术,实现多色荧光同时检测,与传统的滤镜及光电倍增管的检测方式相比,光栅及CCD的优势在于更新荧光化学时无需更换任何硬件设备。从激光光源发出的光线被光学元件分成两股,16根毛细管被一束激光同时从两面照射,有效提高荧光检测灵敏度和均一性。DNA测序仪在2011年前多由美国生产。
日,由中科院北京基因组研究所与中科院半导体研究所承担的“模块化DNA分析系统”项目通过评审验收。这标志着我国在第二代DNA测序仪研发方面,形成了具有自主知识产权的高通量DNA测序技术及其系统样机。日前,验收组对该项目进行了测试和验收考核。验收组认为,此项目完成了仪器研制项目实施方案所要求的各项技术指标,有效测序片段数量、平均读长和有效序列数据总产量等关键技术性能指标远远优于立项指标,该成果实现了与国际主流设备性能相当的国产化DNA测序能力,在基因组学、生物信息学,乃至生命科学诸多方向的基础研究和应用研究方面具有重要实用价值。项目负责人、中科院北京基因组所副所长于军表示,计划下一步将继续开发适应于我国科研需求的仪、配套试剂、芯片和测序分析软件等,使这一设备全面实现系统功能。
仪,测序用电泳槽,制胶设备,PCR仪。
DNA测序技术试剂
(1)SILVER SEQUENCETM DNA测序。
(2)和储备液(38%丙烯酰胺 W/V,2%甲叉双丙烯酰胺 W/V):95g丙烯酰胺,5g甲叉双丙烯酰胺溶于140ml 双蒸水中,定容至250ml,0.45mm过滤器过滤后,贮于棕色瓶中,置于4℃冰箱可保存2周。
DNA测序技术
(3)10%,0.5g过硫酸铵溶于4ml水中,定容至5ml,应新配新用。
(4)10×TBE(1 mol/L Tris, 0.83mol/L 硼酸,10mmol/L EDTA): 121.1g Tris,51.35g硼酸,3.72g Na2 EDTA ·2H2O,溶于中定容至1升,置于4℃下可贮存2周,其pH约为8.3。
(5)TBE电极缓冲液:10×TBE 缓冲液稀释至1×TBE备用。
(6)TEMED
(7)固定/停止溶液:10%(V/V)配制2升备用。
(8)染色溶液:2克,甲醛3ml,溶于2升超纯水中备用。
(9)显影溶液:60克碳酸钠(Na2CO3)溶于2升超纯水中,使用前加3ml 37% 甲醛和 40ml硫代硫酸钠溶液(10mg/ml)。
(10)95%乙醇。
(11)0.5%。
(12)Sigmacote (Sigma CAT. #SL-2)。
DNA测序技术操作
成功地使用银染测序系统需要对提供的操作方法进行仔细考虑。银染不如放射性检测法灵敏,而需要更多的模板量,此外,也不可能通过延长X-光胶片曝光时间的方法增加信号强度。因此,请使用推荐的DNA模板量, 每次均使用所提供的对照检查系统的可靠性,并且注意如下几点:
(1) DNA的浓度和纯度必须经过琼脂糖凝胶电泳或荧光法测定, 样品应与已知量DNA一起电泳。
(2) 分光光度法对于很多DNA提取物包括质粒小量制备来说,并不能给出一个可信的DNA浓度估计,混杂的染色体DNA、蛋白、RNA、有机物及无机化合物均可能有260 nm光吸收。因此,分光光度法常常错误地高估DNA浓度。
(3) DNA制备过程中用核糖核酸酶处理所产生核糖核苷酸,虽然它们在电泳后DNA样品的前面,并不能观察到,但它们仍会有260nm光吸收。
DNA测序技术测序反应
1. 对于每组测序反应,标记四个0.5ml eppendorf管(G、A、T、C)。每管加入2ml适当的d/ddNTP混合物(d/ddNTP Mix)。各加入1滴(约20ml)矿物油,盖上盖子保存于冰上或4℃备用。
2. 对于每组四个测序反应,在一个eppendorf管中混合以下试剂:
(1) 样品反应:
模板DNA 2.1pmol
5×测序缓冲液 5ml
无菌ddH2O 至终体积16ml
(2)对照反应
pGEM-3Zf(+)对照DNA(4mg)  4.0ml
5×测序缓冲液 5ml
pUC/M13正向引物(4.5pmol) 3.6ml
无菌ddH2 O 至终体积 16 ml
3. 在引物/模板混合物(以上第2步)中加入1.0ml测序级Taq DNA聚合酶(5u/ml)。用吸液器吸动几次混匀。
4. 从第3步的酶/引物/模板混合物中吸取4ml加入每一个d/ddNTP混合物的管内。
5. 在微量离心机中离心一下,使所有的溶液位于eppendorf管底部。
6. 把反应管放入预热至95℃的热循环仪,以[注意]中循环模式为基准,开始循环程序。对于每个引物/模板组合都必须选择最佳。下列程序一般能读出从开始350碱基的长度。
7. 热循环程序完成后,在每个小管内加入3μl DNA测序终止溶液,在微量离心机中略一旋转,终止反应。
[注意] 1、测序所用模板DNA的量一般按下面要求加入:
模板种类/长度 模板量
200bp (PCR产物) 16ng(120fmol)
bp(质粒DNA) 4mg (2pmol)
48000bp(λ,粘粒DNA) 1mg(31fmol)
由于超螺旋产生的信号比松弛的线性双链DNA弱,因此使用超螺旋质粒作为模板时其用量要比其它模板大一些。
2、计算与4.5pmol相当的引物纳克数可用以下一般公式:
4.5pmol=1.5ng×n,其中n为引物碱基数
计算与1pmol相当的引物微克数可用以下一般公式:
dsDNA:1pmol=(6.6×10-4 mg)×n,其中n为模板碱基对数
ssDNA:1pmol=(3.3×10-4 mg)×n,其中n为模板碱基数
3、为阻止Taq DNA聚合酶延伸非特异性退火引物, 热循环仪必须预热至95℃。温度变换应越快越好。下面的循环时间不包括变温时间。如果你无法确定使用何种模式,建议从模式1开始。
模式1:适用于引物&24碱基或GC含量&50%
95℃ 2分钟。然后: 95℃ 30秒(变性), 42℃ 30秒(退火), 70℃ 1分钟(延伸)。
模式2:适用于≥24碱基或略短的GC含量≥50%的引物。
95℃ 2分钟, 然后: 95℃ 30秒(变性), 70℃ 30秒(退火/延伸)。 4. 在加入终止溶液之后样品可在4℃保存过夜。
DNA测序技术测序凝胶板的制备
玻璃板的处理
的玻璃板一定要非常清洁,一般先用温水和去污剂洗涤,再用去离子水冲洗玻璃板,除去残留的去污剂,最后用乙醇清洗玻璃板。玻璃板上遗留的去污剂微膜可能导致凝胶染色时背景偏高(棕色)。短玻璃板经粘合溶液处理可将凝胶于玻璃板上。这一步对于在操作过程中防止凝胶撕裂至关重要。
短玻璃板的处理
A. 在1ml 95%乙醇, 0.5%冰乙酸中加入5ml粘合硅烷(Bind Silane), 配成新鲜的粘合溶液。
B. 用经浸透新配的粘合溶液浸透的吸水棉纸擦拭仔细清洗过并已经的玻璃板, 整个板面都必须擦拭。
C. 4-5分钟后, 用95%乙醇单向擦玻璃板, 然后略用力沿垂直方向擦拭。重复三次这一清洗过程, 每次均须换用干净的纸, 除去多余的粘合溶液。
[注意] 1. 在95%乙醇单向擦玻璃板时过度用力会带走过多的粘合硅烷, 使凝胶不能很好地粘附。
2. 准备长玻璃板之前要更换手套,防止粘染粘合硅烷。
3、防止粘合溶液沾染在长玻璃板上是很重要的, 否则将导致凝胶撕裂。
长玻璃板的处理
A. 用浸透Sigmacote溶液的棉纸擦拭清洗过的长玻璃板。
B. 5-10分钟后用吸水棉纸擦拭玻璃板以除去多余的Sigmacote溶液。
[注意] 1. 用过的凝胶可在水中浸泡后用剃须刀片或塑料刮刀刮去。玻璃板须用去污剂完全清洗。或者凝胶用10% NaOH浸泡后除去。为防止交叉污染, 用于清洗短玻璃板的工具必须与清洗长玻璃板的工具分开, 如果出现交叉污染, 以后制备的凝胶可能撕裂或变得松弛。
凝胶的制备
(1)玻璃板经粘合硅胶和Sigmacote处理后,即可固定玻璃板。该方法是用0.2mm或0.4mm厚的边条置于玻璃板左右两侧,将另一块玻璃板压于其上。在长玻璃板的一侧插入鲨鱼齿梳平的一面边缘,用夹子固定住。
(2)根据所需要的凝胶浓度,按下表制备测序凝胶,一般6%-8%的胶浓度可获得较好的结果。配制过程中,先用适量双蒸水溶解尿素,再加入 Acr&Bis和10×TBE缓冲液,再用双蒸水调终体积至99.2ml,并用0.45mm的滤膜过滤,然后加过硫酸铵和TEMED。溶解尿素时不必加热。如果确需加热则应等溶液完全冷却后,方可加入TEMED和过硫酸铵。一般在胶灌制后4-6分钟,即开始聚合,如果聚合不好,则应使用高浓度的 TEMED和过硫酸铵。
凝胶终浓度
3 4 5 6 8 12 16 18
尿素(g) 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0
Acr&Bis(ml) 7.5 10.0 12.0 14.5 20.0 30.0 40.0 50.0
10×TBE(ml) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
(ml) 47.5 45.0 43.0 40.5 35.0 25.0 15.0 5.0
10%过硫酸铵(ml) 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7
TEMED(ml) 87 80 80 80 80 70 47 40
(3)胶配制好后,即可灌制胶板。一般是将凝胶沿着压条边缘缓慢地倒入玻璃板的槽中,倒完后,静止放置使之聚合完全。
[注意] 1、使用夹子固定玻璃板时,最好夹子的力量稍大一些,防止因力量不足使灌胶的过程中出现漏胶液现象。
2、灌制凝胶的过程中要严防产生气泡,否则影响测序的结果。
DNA测序技术电泳
(1)当凝胶聚合完全后,拨出鲨鱼齿梳,将该梳子反过来,把有齿的一头插入凝胶中,形成加样孔。
(2)立即将胶板固定在测序凝胶槽中,一般测序凝胶槽的上下槽是分开的,因而只有在固定好凝胶板后,方能加入TBE缓冲液。
(3)稀释10×TBE缓冲液至1×TBE,将该缓冲液加入上下二个电泳槽中,去除产生的气泡,接上电源准备预电泳。
(4)有些电泳槽,如LKB的Macrophor等是使用水浴加热的,则应先将水浴加热至55℃后进行。有的不使用水浴加热,依靠过程中自身产生的热进行保温,如上海求精有机玻璃仪器生产的测序电泳槽,这种槽需夹上二块散热铝板,使整个凝胶板的温度一致。
(5)按30V/cm的电压预电泳20-30分钟。预电泳的过程是去除凝胶的,同时使凝胶板达到所需的温度。高温电泳可防止GC丰富区形成的发夹状结构,影响测序的结果。
(1). 用鲨鱼齿梳制作加样孔时,应注意将齿尖插入胶中0.5mm左右,千万注意不能使加样孔渗漏,否则得不到正确的结果。
(2). 应时刻注意上面电泳槽中的缓冲液是否渗漏,否则极易造成短路而损坏电泳仪。
样品的制备
当在时,即可进行样品的制备,将反应完毕的样品在沸水浴中加热1-3分钟,立即置于冰上即可。如果样品长时间不用,则应重新处理。可使用4- 6%,胶厚0.4mm。厚度小于0.4mm的胶可能导致信号太弱。加样时不必吸去上层覆盖的矿物油,但要小心地吸取矿物油下的蓝色样品。
上样及电泳
关闭电泳仪,用移液枪吸清洗样品孔,去除在预电泳时扩散出来的尿素,然后立即用毛细管进样器吸取样品,加入样品孔中。上样顺序一般为G、A、 T、C。加样完毕后,立即电泳。开始可用30V/cm进行电泳,5分钟后可提高至40-60V/cm,并保持恒压状态。一般来说,一个55cm长, 0.2mm厚的凝胶板,在2500V恒压状态下电泳2小时即可走到底部,同时在电泳过程中,电流可稳定地从28mA降至25mA。为了能读到更长的序列,可采用两轮或多轮上样。
1、上样时,一定要注意凝胶板的温度是否达到55℃左右,如果还没有达到,则应等温度达到后才能上样电泳。
2、一般来说电泳时,不宜使用太高的电压,因为太高的电压会使凝胶的分辨率降低,并且使带扩散。电泳中可进行恒功率电泳。
DNA测序技术测序凝胶的银染
染色过程要求凝胶浸在塑料盘中。因而至少使用两个盘子,大小与玻璃板类似。在盘中加入新鲜溶液之前须用高质量的水洗涤盘子。
1. 完毕后用一个塑料片子小心地分开两板,凝胶应该牢固地附着在短玻璃板上。
2. 固定凝胶:将凝胶(连玻璃板)放入塑料盘,用固定/停止溶液浸没,充分振荡20分钟或直至样品中染料完全消失,胶可在固定/停止溶液中保存过夜(不振荡)。保留固定/停止溶液,用于终止显影反应。
3. 洗胶:用超纯水振荡洗胶3次,每次2分钟。从水中取出, 当转移至下一溶液时拿着胶板边沿静止10-20秒,使水流尽。
4. 凝胶染色:把凝胶移至染色溶液充分摇动30分钟。
5. 凝胶显影:
(1). 在显影溶液中加入甲醛(3ml)和硫代硫酸钠溶液(400μl)以完成显影液的配制。
(2). 从染色溶液中取出凝胶放入装有超纯水的盘中浸洗5-10秒。注意,把凝胶从超纯水转移到显影溶液的总时间不能长于5-10秒。浸泡时间过长则导致信号微弱或丧失信号。若浸泡时间过长,可重复第五步用染色液浸泡。
(3). 立刻将凝胶转移至1升(总量的一半)预冷的显影液充分振荡直至模板带开始显现或开始出现第一批条带,把凝胶移入剩下的1升显影液中继续显影2--3分钟,或直至所有条带出现。
6. 固定凝胶:在显影液中直接加入等体积的固定/停止溶液。停止显影反应,固定凝胶。
7. 在超纯水中浸洗凝胶两次,每次2分钟,注意在本操作中戴手套拿着胶板边缘避免在胶上印上。
8. 将凝胶置于室温干燥或用抽气干燥。在可见光灯箱或亮白,黄色背景(如纸)上观察凝胶,若需永久保存的记录, 则可用EDF胶片保留实验结果。
[注意] 测序产物的是显现序列信息的一种新方法,本系统的成败受几个因素的影响。
1. 水的质量对于染色的成功极其重要。超纯水(NANOpureR 或Milli-QR 的水)或双蒸水可获得较好的效果, 如果水中有杂质, 则低分子量条带可能无法出现。
2. 碳酸钠也非常重要。使用新鲜的,级碳酸钠较好,如Fisher和Kodak ACS试剂级碳酸钠(Fisher Cat #S263-500或S262-3,或Kodak Cat #109-1990),一般可获得较好的结果。
3. 染色后的洗涤步骤是非常关键的。如果凝胶洗涤时间太长,银颗粒会脱离DNA, 产生很少或没有序列信号。如果洗涤时间过长,染色步骤可以重新进行。
4. 如果凝胶厚度超过0.4mm或浓度高于4-6%,则有必要延长固定和染色的时间。如果凝胶比0.4mm薄,染色反应后的洗涤必须缩短至不超过5秒。
5. 在室温下进行所有步骤,显影反应除外。显影溶液必须预冷至10-12℃以减小背景杂色。注意:临用前在显影溶液中加入甲醛和。用新配的染色及显影溶液。不要重复使用任何溶液。
DNA测序技术意义
DNA测序技术快速测序造福人类
DNA测序方法的飞速发展让我们不仅知晓了人类的全基因组序列,小麦、水稻、家蚕以及很多细菌的序列也都尽在掌握,这时探明一段序列所代表的生物学意义成了科学家的新目标。
通过对人类基因组序列的分析,科学家发现30亿对组成的庞大序列中只有1.5%用于编码基因,另外还有少许扮演调控基因表达的角色,剩余的大部分都是功能未知的“垃圾DNA”。从表面上看,人与人之间的不同是如此缤纷复杂,但深入到DNA水平上,基因却只有0.1%的不同。很多时候,在一条序列上,人与人之间只有一个核苷酸的差异,这种现象被科学家命名为(Single Nucleotide Polymorphisms,简称SNPs)。
以往在数万个人类中筛选致病相关基因就像大海捞针。科学家需要取得同一个家族的多位患者的标本,才能设法定位这个基因究竟在何处。比如在寻找亨廷顿氏病的致病基因时,多位科学家在委内瑞拉一个亨廷顿氏病家族中折腾了十几年才真正把它逮住。现在有了快速测序技术和SNPs这个强有力的工具,筛查疾病易感人群、鉴定致病或抑病基因、药物高通量的设计与测试乃至个性化医疗都将不再是憧憬中的事情。
位于深圳的华大基因研究院是全球最大的基因组测序及研究应用中心之一。人类基因组计划1%的工作任务由华大基因承担,之后又参与完成国际HAPmap计划,并完成了第一个亚洲人也是第一个中国人的基因组测序,称为“炎黄一号”。
威康信托基金会是英国最大的生物医学资助机构之一,拥有50余个研究小组。在过去的几年他们开展了一项颇具野心的庞大计划——向双向障碍病、冠心病、克罗恩氏病、风湿性关节炎、高血压以及I型糖尿病和II型糖尿病等多基因疾病发起挑战。通过对1.7万名英国人的SNPs进行筛查分析,在基因组中找到24处与上述7种疾病相关的位点,仅在II型糖尿病的筛查中就找到并证实了10个致病基因。
DNA测序技术就像刚发现电的那个时代
SNPs的大量存在让人们意识到并非独一无二,实际上每个人都有自己的独特图谱。随着DNA测序速度指数般的提升,个人服务也逐渐浮出水面。
2006年美国X-大奖基金会悬红1000万美元,授予能够在10天之内完成100人且每人花费低于1万美元的研究小组。早些时候美国国立人类基因组研究所也发起一项计划,旨在将全基因组测序的人均成本降至1000美元以下。
目前虽然尚无人最终撞线,但已有多家公司嗅出了其中的商机——既然人与人之间大部分的DNA序列都是一致的,那么通过筛查SNPs,找出顾客基因组中的不同之处,尤其是找出一些与疾病相关的位点,也不失为一种“准个人基因组服务”。
在这一领域的竞争中,风头最劲的无疑是“23 and me”公司,除了“创始人之一的安妮·沃基斯基是横跨生物、金融两界的耶鲁才女”,“谷歌技术总裁谢尔盖·布林之妻加入”等让人津津乐道的花边新闻之外,他们提供的产品还荣获了2008年度《时代》杂志评选的年度发明50佳,并且位列第一。
2007年底,“23 and me”正式推出了个性化的基因测试服务,标价1000美元。当时股神巴菲特及传媒巨鳄默多克都曾做过测试。2008年9月,测试服务的价格跳水至399美元,这一平民价格终于让一度高不可攀的个人基因组测试走入了寻常百姓家。
顾客在“23 and me”的网站上订购这项服务后不久,会收到一个试剂盒。只需在提供的一支无菌试管中吐上2.5毫升的唾液,密封好后快递至该公司就万事大吉了。2~6周后,你在订购时指定的邮箱会收到一封邮件,根据信中的密码登录“23 and me”的网站,便可看到所有的结果。比如包含有基因型详细内容的原始数据,还有一份分析结果的详细报告,最后甚至还附有参考文献。据“23 and me”声称,通过这项服务,顾客可以了解到日后罹患肿瘤、奥茨海默症、糖尿病以及其他疾患的风险。
除了“23 and me”公司,冰岛的deCODE公司和美国加州的Navigenics公司都推出了个人基因测试服务,不过面对这些遍地开花的商业化尝试,一些科学家提出了自己的担忧,疾病与基因有时并非百分之百地一一对应,很多目前已知的疾病标记只是轻微提高疾病风险,但却会造成不必要的担心。
个人基因测试大行其道后带来基因歧视以及遗传数据保护不当导致的隐私泄露问题,也被生物伦理学家所关注。此前在美国,曾有多家保险公司以一些黑人携带地中海贫血病基因为由拒绝为其提供医疗保险。不过好在2008年5月,美国参众两院均以压倒多数通过了《遗传信息无歧视法案》,其中明文规定基因检测显示某人易患某种疾病,保险公司不得据此提高医疗保险费或者拒绝为其提供保险。同样,雇主也不能以作为招聘、解雇或升职等的依据。
飞速发展的DNA测序技术还在帮助科学家不断地从DNA序列中挖出更多的秘密,未来怎样难以预料。诚如研究的知名专家、美国公司首席科学家克雷格·文特尔所言:“破译基因组密码的意义就如同在刚发现电的那个时代,没有人能想象出个人电脑、互联网一样。”测序技术发展史(转贴)
从1977年第一代DNA测序技术(Sanger法),发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。这篇文章对当前的测序技术以及它们的测序原理做了一个简单的小结。
图1 测序技术的发展历程生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。
以上图1所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。第一代测序技术第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解).
并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法,但他们的共同核心手段都是利用了Sanger中的可中断DNA合成反应的dNTP。
第二代测序技术总的说来,第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。经过不断的技术开发和改进,以Roche公司的454技术、illumina公司的Solexa,Hiseq技术和ABI公司的Solid技术为标记的第二代测序技术诞生了。第二代测序技术大大降低了测序成本的同时,还大幅提高了测序速度,并且保持了高准确性,以前完成一个人类基因组的测序需要3年时间,而使用二代测序技术则仅仅需要1周,但在序列读长方面比起第一代测序技术则要短很多。表1和图3对第一代和第二代测序技术各自的特点以及测序成本作了一个简单的比较,以下将对这三种主要的第二代测序技术的主要原理和特点作一个简单的介绍。
图3 测序成本的变化
IlluminaIllumina公司的Solexa和Hiseq应该说是目前全球使用量最大的第二代测序机器,这两个系列的技术核心原理是相同的2,4。这两个系列的机器采用的都是边合成边测序的方法,它的测序过程主要分为以下4步,如图4.1、DNA待测文库构建利用超声波把待测的DNA样本打断成小片段,目前除了组装之外和一些其他的特殊要求之外,主要是打断成200-500bp长的序列片段,并在这些小片段的两端添加上不同的接头,构建出单链DNA文库。2、FlowcellFlowcell是用于吸附流动DNA片段的槽道,当文库建好后,这些文库中的DNA在通过flowcell的时候会随机附着在flowcell表面的channel上。每个Flowcell有8个channel,每个channel的表面都附有很多接头,这些接头能和建库过程中加在DNA片段两端的接头相互配对(这就是为什么flowcell能吸附建库后的DNA的原因),并能支持DNA在其表面进行桥式PCR的扩增。3、桥式PCR扩增与变性桥式PCR以Flowcell表面所固定的接头为模板,进行桥形扩增,如图4.a所示。经过不断的扩增和变性循环,最终每个DNA片段都将在各自的位置上集中成束,每一个束都含有单个DNA模板的很多分拷贝,进行这一过程的目的在于实现将碱基的信号强度放大,以达到测序所需的信号要求。4、测序测序方法采用边合成边测序的方法。向反应体系中同时添加DNA聚合酶、接头引物和带有碱基特异荧光标记的4中dNTP(如同Sanger测序法)。这些dNTP的3’-OH被化学方法所保护,因而每次只能添加一个dNTP。在dNTP被添加到合成链上后,所有未使用的游离dNTP和DNA聚合酶会被洗脱掉。接着,再加入激发荧光所需的缓冲液,用激光激发荧光信号,并有光学设备完成荧光信号的记录,最后利用计算机分析将光学信号转化为测序碱基。这样荧光信号记录完成后,再加入化学试剂淬灭荧光信号并去除dNTP
3’-OH保护基团,以便能进行下一轮的测序反应。Illumina的这种测序技术每次只添加一个dNTP的特点能够很好的地解决同聚物长度的准确测量问题,它的主要测序错误来源是碱基的替换,目前它的测序错误率在1%-1.5%之间,测序周期以人类基因组重测序为例,30x测序深度大约为1周。
图4 Illumina测序流程
Roche 454Roche
454测序系统是第一个商业化运营二代测序技术的平台。它的主要测序原理是(图5 abc):1、DNA文库制备454测序系统的文件构建方式和illumina的不同,它是利用喷雾法将待测DNA打断成300-800bp长的小片段,并在片段两端加上不同的接头,或将待测DNA变性后用杂交引物进行PCR扩增,连接载体,构建单链DNA文库(图5a)。2、Emulsion
PCR454当然DNA扩增过程也和illumina的截然不同,它将这些单链DNA结合在水油包被的直径约28um的磁珠上,并在其上面孵育、退火。乳液PCR最大的特点是可以形成数目庞大的独立反应空间以进行DNA扩增。其关键技术是“注水到油”(水包油),基本过程是在PCR反应前,将包含PCR所有反应成分的水溶液注入到高速旋转的矿物油表面,水溶液瞬间形成无数个被矿物油包裹的小水滴。这些小水滴就构成了独立的PCR反应空间。理想状态下,每个小水滴只含一个DNA模板和一个磁珠。这些被小水滴包被的磁珠表面含有与接头互补的DNA序列,因此这些单链DNA序列能够特异地结合在磁珠上。同时孵育体系中含有PCR反应试剂,所以保证了每个与磁珠结合的小片段都能独立进行PCR扩增,并且扩增产物仍可以结合到磁珠上。当反应完成后,可以破坏孵育体系并将带有DNA的磁珠富集下来。进过扩增,每个小片段都将被扩增约100万倍,从而达到下一步测序所要求的DNA量。3、焦磷酸测序测序前需要先用一种聚合酶和单链结合蛋白处理带有DNA的磁珠,接着将磁珠放在一种PTP平板上。这种平板上特制有许多直径约为44um的小孔,每个小孔仅能容纳一个磁珠,通过这种方法来固定每个磁珠的位置,以便检测接下来的测序反应过程。测序方法采用焦磷酸测序法,将一种比PTP板上小孔直径更小的磁珠放入小孔中,启动测序反应。测序反应以磁珠上大量扩增出的单链DNA为模板,每次反应加入一种dNTP进行合成反应。如果dNTP能与待测序列配对,则会在合成后释放焦磷酸基团。释放的焦磷酸基团会与反应体系中的ATP硫酸化学酶反应生成ATP。生成的ATP和荧光素酶共同氧化使测序反应中的荧光素分子并发出荧光,同时由PTP板另一侧的CCD照相机记录,最后通过计算机进行光信号处理而获得最终的测序结果。由于每一种dNTP在反应中产生的荧光颜色不同,因此可以根据荧光的颜色来判断被测分子的序列。反应结束后,游离的dNTP会在双磷酸酶的作用下降解ATP,从而导致荧光淬灭,以便使测序反应进入下一个循环。由于454测序技术中,每个测序反应都在PTP板上独立的小孔中进行,因而能大大降低相互间的干扰和测序偏差。454技术最大的优势在于其能获得较长的测序读长,当前454技术的平均读长可达400bp,并且454技术和illumina的Solexa和Hiseq技术不同,它最主要的一个缺点是无法准确测量同聚物的长度,如当序列中存在类似于PolyA的情况时,测序反应会一次加入多个T,而所加入的T的个数只能通过荧光强度推测获得,这就有可能导致结果不准确。也正是由于这一原因,454技术会在测序过程中引入插入和缺失的测序错误。
图5 Roche 454测序流程
Solid测序技术Solid测序技术是ABI公司于2007年开始投入用于商业测序应用的仪器。它基于连接酶法,即利用DNA连接酶在连接过程之中测序(图6)。它的原理是:
图6-a Solid测序技术1、DNA文库构建片段打断并在片段两端加上测序接头,连接载体,构建单链DNA文库。2、Emulsion
PCRSolid的PCR过程也和454的方法类似,同样采用小水滴emulsion
PCR,但这些微珠比起454系统来说则要小得多,只有1um。在扩增的同时对扩增产物的3’端进行修饰,这是为下一步的测序过程作的准备。3’修饰的微珠会被沉积在一块玻片上。在微珠上样的过程中,沉积小室将每张玻片分成1个、4个或8个测序区域(图6-a)。Solid系统最大的优点就是每张玻片能容纳比454更高密度的微珠,在同一系统中轻松实现更高的通量。3、连接酶测序这一步是Solid测序的独特之处。它并没有采用以前测序时所常用的DNA聚合酶,而是采用了连接酶。Solid连接反应的底物是8碱基单链荧光探针混合物,这里将其简单表示为:3’-XXnnnzzz-5’。连接反应中,这些探针按照碱基互补规则与单链DNA模板链配对。探针的5’末端分别标记了CY5、Texas
Red、CY3、6-FAM这4种颜色的荧光染料(图6-a)。这个8碱基单链荧光探针中,第1和第2位碱基(XX)上的碱基是确定的,并根据种类的不同在6-8位(zzz)上加上了不同的荧光标记。这是Solid的独特测序法,两个碱基确定一个荧光信号,相当于一次能决定两个碱基。这种测序方法也称之为两碱基测序法。当荧光探针能够与DNA模板链配对而连接上时,就会发出代表第1,2位碱基的荧光信号,图6-a和图6-b中的比色版所表示的是第1,2位碱基的不同组合与荧光颜色的关系。在记录下荧光信号后,通过化学方法在第5和第6位碱基之间进行切割,这样就能移除荧光信号,以便进行下一个位置的测序。不过值得注意的是,通过这种测序方法,每次测序的位置都相差5位。即第一次是第1、2位,第二次是第6、7位……在测到末尾后,要将新合成的链变性,洗脱。接着用引物n-1进行第二轮测序。引物n-1与引物n的区别是,二者在与接头配对的位置上相差一个碱基(图6-a
8)。也即是,通过引物n-1在引物n的基础上将测序位置往3’端移动一个碱基位置,因而就能测定第0、1位和第5、6位……第二轮测序完成,依此类推,直至第五轮测序,最终可以完成所有位置的碱基测序,并且每个位置的碱基均被检测了两次。该技术的读长在2&50bp,后续序列拼接同样比较复杂。由于双次检测,这一技术的原始测序准确性高达99.94%,而15x覆盖率时的准确性更是达到了99.999%,应该说是目前第二代测序技术中准确性最高的了。但在荧光解码阶段,鉴于其是双碱基确定一个荧光信号,因而一旦发生错误就容易产生连锁的解码错误。&&
图6-b Solid测序技术第三代测序技术测序技术在近两三年中又有新的里程碑。以PacBio公司的SMRT和Oxford
Technologies纳米孔单分子测序技术,被称之为第三代测序技术。与前两代相比,他们最大的特点就是单分子测序,测序过程无需进行PCR扩增。其中PacBio
SMRT技术其实也应用了边合成边测序的思想5,并以SMRT芯片为测序载体。基本原理是: DNA聚合酶和模板结合,4色荧光标记 4
种碱基(即是dNTP),在碱基配对阶段,不同碱基的加入,会发出不同光,根据光的波长与峰值可判断进入的碱基类型。同时这个 DNA
聚合酶是实现超长读长的关键之一,读长主要跟酶的活性保持有关,它主要受激光对其造成的损伤所影响。PacBio
SMRT技术的一个关键是怎样将反应信号与周围游离碱基的强大荧光背景区别出来。他们利用的是ZMW(零模波导孔)原理:如同微波炉壁上可看到的很多密集小孔。小孔直径有考究,如果直径大于微波波长,能量就会在衍射效应的作用下穿透面板而泄露出来,从而与周围小孔相互干扰。如果孔径小于波长,能量不会辐射到周围,而是保持直线状态(光衍射的原理),从而可起保护作用。同理,在一个反应管(SMRTCell:单分子实时反应孔)中有许多这样的圆形纳米小孔,
即 ZMW(零模波导孔),外径
100多纳米,比检测激光波长小(数百纳米),激光从底部打上去后不能穿透小孔进入上方溶液区,能量被限制在一个小范围(体积20X
L)里,正好足够覆盖需要检测的部分,使得信号仅来自这个小反应区域,孔外过多游离核苷酸单体依然留在黑暗中,从而实现将背景降到最低。另外,可以通过检测相邻两个碱基之间的测序时间,来检测一些碱基修饰情况,既如果碱基存在修饰,则通过聚合酶时的速度会减慢,相邻两峰之间的距离增大,可以通过这个来之间检测甲基化等信息(图7)。SMRT技术的测序速度很快,每秒约10个dNTP。但是,同时其测序错误率比较高(这几乎是目前单分子测序技术的通病),达到15%,但好在它的出错是随机的,并不会像第二代测序技术那样存在测序错误的偏向,因而可以通过多次测序来进行有效的纠错。
图7 PacBio SMRT测序原理Oxford Nanopore
Technologies公司所开发的纳米单分子测序技术与以往的测序技术皆不同,它是基于电信号而不是光信号的测序技术5。该技术的关键之一是,他们设计了一种特殊的纳米孔,孔内共价结合有分子接头。当DNA碱基通过纳米孔时,它们使电荷发生变化,从而短暂地影响流过纳米孔的电流强度(每种碱基所影响的电流变化幅度是不同的),灵敏的电子设备检测到这些变化从而鉴定所通过的碱基(图8)。该公司在去年基因组生物学技术进展年会(AGBT)上推出第一款商业化的纳米孔测序仪,引起了科学界的极大关注。纳米孔测序(和其他第三代测序技术)有望解决目前测序平台的不足,纳米孔测序的主要特点是:读长很长,大约在几十kb,甚至100
错误率目前介于1%至4%,且是随机错误,而不是聚集在读取的两端;数据可实时读取;通量很高(30x人类基因组有望在一天内完成);起始DNA在测序过程中不被破坏;以及样品制备简单又便宜。理论上,它也能直接测序RNA。纳米孔单分子测序计算还有另一大特点,它能够直接读取出甲基化的胞嘧啶,而不必像传统方法那样对基因组进行bisulfite处理。这对于在基因组水平直接研究表观遗传相关现象有极大的帮助。并且改方法的测序准确性可达99.8%,而且一旦发现测序错误也能较容易地进行纠正。但目前似乎还没有应用该技术的相关报道。
图8 纳米孔测序其他测序技术目前还有一种基于半导体芯片的新一代革命性测序技术——Ion
Torrent6。该技术使用了一种布满小孔的高密度半导体芯片,
一个小孔就是一个测序反应池。当DNA聚合酶把核苷酸聚合到延伸中的DNA链上时,会释放出一个氢离子,反应池中的PH发生改变,位于池下的离子感受器感受到H+离子信号,H+离子信号再直接转化为数字信号,从而读出DNA序列(图9)。这一技术的发明人同时也是454测序技术的发明人之一——Jonathan
Rothberg,它的文库和样本制备跟454技术很像,甚至可以说就是454的翻版,只是测序过程中不是通过检测焦磷酸荧光显色,而是通过检测H+信号的变化来获得序列碱基信息。Ion
Torrent相比于其他测序技术来说,不需要昂贵的物理成像等设备,因此,成本相对来说会低,体积也会比较小,同时操作也要更为简单,速度也相当快速,除了2天文库制作时间,整个上机测序可在2-3.5小时内完成,不过整个芯片的通量并不高,目前是10G左右,但非常适合小基因组和外显子验证的测序。
小结以上,对各代测序技术的原理做了简要的阐述,这三代测序技术的特点比较汇总在以下表1和表2中。其中测序成本,读长和通量是评估该测序技术先进与否的三个重要指标。第一代和第二代测序技术除了通量和成本上的差异之外,其测序核心原理(除Solid是边连接边测序之外)都是基于边合成边测序的思想。第二代测序技术的优点是成本较之一代大大下降,通量大大提升,但缺点是所引入PCR过程会在一定程度上增加测序的错误率,并且具有系统偏向性,同时读长也比较短。第三代测序技术是为了解决第二代所存在的缺点而开发的,它的根本特点是单分子测序,不需要任何PCR的过程,这是为了能有效避免因PCR偏向性而导致的系统错误,同时提高读长,并要保持二代技术的高通量,低成本的优点。本文摘自YellowTree
STbioinf《三代基因组测序技术原理简介》,原文参考了多篇测序史上的重要文献,供测序工作者学习与借鉴,在此对为测序工作做出贡献的科研学者表示诚挚的感谢!
来源:锐翌基因
转载自:/forum.php?mod=viewthread&tid=5413818
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

我要回帖

更多关于 人类基因组测序 的文章

 

随机推荐