PCr扩增,单引物扩增与模板结合时,单引物扩增5'端最多可以游离十几个碱基而不影响PCR反应的进行游离的怎么办

BioonGroup旗下网站
PCR引物设计及评价
【实验目的】
1、掌握引物设计的基本要求,并熟悉使用Primer premier5.0软件进行引物搜索。
2、掌握使用软件oligo6.0对设计的引物进行评价分析。
【实验原理】
一、引物设计原则
聚合梅链式反应(polymerase chain reaction)即PCR技术,是一种在体外快速扩增特定基因或DNA 序列的方法,故又称基因的体外扩增法。PCR技术已成为分子生物学研究中使用最多,最广泛的手段之一,而引物设计是PCR技术中至关重要的一环,使用不合适的PCR引物容易导致实验失败:表现为扩增出目的带之外的多条带(如形成引物二聚体带),不出带或出带很弱,等等。现在PCR引物设计大都通过计算机软件进行,可以直接提交模板序列到特定网页,得到设计好的引物,也可以在本地计算机上运行引物设计专业软件。引物设计原则如下:
1、引物应在序列的保守区域设计并具有特异性。引物序列应位于基因组DNA的高度保守区,且与非扩增区无同源序列。这样可以减少引物与基因组的非特异结合,提高反应的特异性;
2、引物的长度一般为15-30 bp。常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应;
3、引物不应形成二级结构。引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行;
4、引物序列的GC含量一般为40-60%。过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大;
5、引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T);
6、引物5'端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。可根据下一步实验中要插入PCR产物的载体的相应序列而确定。
7、引物3'端不可修饰。引物3'端的末位碱基对Taq酶的DNA合成效率有较大的影响。不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3'端使用碱基A。
8、引物序列自身或者引物之间不能在出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加;
9、G值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。应当选用3'端 G值较低(绝对值不超过9),而5'端和中间 G值相对较高的引物。引物的3'端的 G值过高,容易在错配位点形成双链结构并引发DNA聚合反应;
值得一提的是,各种模板的引物设计难度不一。有的模板本身条件比较困难,例如GC含量偏高或偏低,导致找不到各种指标都十分合适的引物;在用作克隆目的的PCR因为产物序列相对固定,引物设计的选择自由度较低,在这种情况只能退而求其次,尽量去满足条件。
二、引物设计软件Primer premier5.0及oligo6.0
"Premier"的主要功能分四大块,其中有三种功能比较常用,即引物设计、限制性内切酶位点分析和DNA 基元(motif)查找。"Premier"还具有同源性分析功能,但并非其特长,在此略过。此外,该软件还有一些特殊功能,其中最重要的是设计简并引物,另外还有序列"朗读"、DNA 与蛋白序列的互换、语音提示键盘输入等等。有时需要根据一段氨基酸序列反推到DNA 来设计引物,由于大多数氨基酸(20 种常见结构氨基酸中的18 种)的遗传密码不只一种,因此,由氨基酸序列反推DNA 序列时,会遇到部分碱基的不确定性。这样设计并合成的引物实际上是多个序列的混和物,它们的序列组成大部分相同,但在某些位点有所变化,称之为简并引物。遗传密码规则因物种或细胞亚结构的不同而异,比如在线粒体内的遗传密码与细胞核是不一样的。"Premier"可以针对模板DNA 的来源以相应的遗传密码规则转换DNA 和氨基酸序列。软件共给出八种生物亚结构的不同遗传密码规则供用户选择,有纤毛虫大核(Ciliate Macronuclear)、无脊椎动物线粒体(Invertebrate Mitochondrion)、支原体(Mycoplasma)、植物线粒体(Plant Mitochondrion)、原生动物线粒体(Protozoan Mitochondrion)、一般标准(Standard)、脊椎动物线粒体(Vertebrate Mito-chondrion)和酵母线粒体(Yeast Mitochondrion)。
对引物进行分析评价的的软件中,"oligo" 是最著名的。它的使用并不十分复杂,Oligo 6.0的界面是三个图,Tm图、ΔG图和Frq图。"Oligo"的功能比"Premier"还要单一,就是引物设计。但它的引物分析功能如此强大以至于能风靡全世界。所以引物设计的最佳搭配是"Premier"进行引物搜索"Oligo" 对引物分析评价。
【实验内容】
1、使用Primer premier5.0软件进行人瘦素 (leptin) mRNA引物的设计。
2、使用oligo6.0对引物进行评价分析。
【实验方法】
一、引物搜索
1、打开Primer premier5.0软件,调入人瘦素 (leptin) 基因序列:点击"file"&&& "open"&& "DNA sequence";或者直接点击"file"& "new"&& "DNA sequence",弹出一对话框如下图,然后将序列人瘦素 (leptin) 基因复制在空白框。
2、序列文件显示如图,点击"Primer";
3、进一步点击"search" 按钮,出现"search criteria"窗口,有多种参数可以调整。搜索目的(Seach For)有三种选项,PCR引物(PCR Primers),测序引物(Sequencing Primers),杂交探针(Hybridization Probes)。搜索类型(Search Type)可选择分别或同时查找上、下游引物(Sense/Anti-sense Primer,或Both),或者成对查找(Pairs),或者分别以适合上、下游引物为主(Compatible with Sense/Anti-sense Primer)。另外还可改变选择区域(Search Ranges),引物长度(Primer Length),选择方式(Search Mode),参数选择(Search Parameters)等等。使用者可根据自己的需要设定各项参数。我们将Product Size设置300-350,其他参数使用默
然后点击"OK" ,随之出现的Search Progress窗口中显示Search& Completed时,再点击"OK"。
4、这时搜索结果以表格的形式出现,有三种显示方式,上游引物(Sense),下游引物(Anti-sense),成对显示(Pairs)。默认显示为成对方式,并按优劣次序(Rating)排列,满分为100,即各指标基本都能达标(如下图)。
5、按照搜寻结果显示,在主窗口中检查该引物对的二级结构情况,逐条分析,依次筛选。下面进行序列筛选:点击其中一对引物,如第21#引物,在"Peimer Premier"主窗口,如图所示:该图分三部分,最上面是图示PCR模板及产物位置,中间是所选的上下游引物的一些性质,最下面是四种重要指标的分析,包括发夹结构(Hairpin),二聚体(Dimer),错误引发情况(False Priming),及上下游引物之间二聚体形成情况(Cross Dimer)。当所分析的引物有这四种结构的形成可能时,按钮由"None" 变成"Found" ,点击该按钮,在左下角的窗口中就会出现该结构的形成情况。一对理想的引物应当不存在任何一种上述结构,因此最好的情况是最下面的分析栏没有"Found",只有"None" 。值得注意的是中间一栏的末尾给出该引物的最佳退火温度,可参考应用。
二、引物分析
1、打开oligo的页面如下:
2、单击file菜单再点open或点击"打开"快捷图标或者用快捷键"CTrl+O"可弹出一对话框,然后选择序列人瘦素 (leptin) 基因。出现以下窗口。
3、点击"window"再点击"Tile",出现以下窗口,图中显示的三个指标分别为Tm、ΔG和Frq,因为分析要涉及多个指标,起动窗口的cascade排列方式不太方便,可从windows菜单改为tile方式。如果觉得太拥挤,可去掉一个指标。
?G值反映了序列与模板的结合强度,最好引物的?G值在5'端和中间值比较高,而在3'端相对低(如图:)
Tm值曲线以选取72℃附近为佳,5'到3'的下降形状也有利于引物引发聚合反应。
Frq曲线为"Oligo 6"新引进的一个指标,揭示了序列片段存在的重复机率大小。选取引物时,宜选用3'端Frq值相对较低的片段。
4、在设计时,可依据图上三种指标的信息选取序列,如果觉得合适,可点击Tm图块上左下角的Upper按钮 ,选好上游引物,此时该按钮变成红色,表示上游引物已选取好。下游引物的选取步骤基本同上,只是按钮变成Lower。
5、当上下游引物全选好以后,需要对引物进行评价。可以用"Analyse"菜单分析你的引物:比如有无引物二聚体、发卡结构等等。首先检查引物二聚体尤其是3'端二聚体形成的可能性。需要注意的是,引物二聚体有可能是上游或下游引物自身形成,也有可能是在上下游引物之间形成(cross dimer)。二聚体形成的能值越高,越不符合要求。一般的检测(非克隆)性PCR,对引物位置、产物大小要求较低,因而应尽可能选取不形成二聚体或其能值较低的引物。第二项检查是发夹结构(hairpin);与二聚体相同,发夹结构的能值越低越好。一般来说,这两项结构的能值以不超过4.5为好。当然,在设计克隆目的的PCR引物时,引物两端一般都添加酶切位点,必然存在发夹结构,而且能值不会太低。这种PCR需要通过灵活调控退火温度以达到最好效果,对引物的发夹结构的检测就不应要求太高。第三项检查为GC含量,以45-55%为宜。有一些模板本身的GC含量偏低或偏高,导致引物的GC含量不能被控制在上述范围内,这时应尽量使上下游引物的GC含量以及Tm值保持接近,以有利于退火温度的选择。
当我们结束以上三项检测,按Alt+P键弹出PCR窗口,其中总结性地显示该引物的位置、产物大小、Tm值等参数,最有用的是还给出了推荐的最佳退火温度和简单的评价。
1、提交使用Primer premier5.0及oligo6.0软件进行人瘦素 (leptin) mRNA引物的设计结果;
2、总结引物设计应注意的关键事项。
相关PCR引物设计您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
分子生物复习宝典题库.doc 14页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
你可能关注的文档:
··········
··········
编者按:以下内容几乎包含了分子生物学的所有重点,但肯定要大于考试范围,望各位同学在周四课结束后,根据老师的重点复习。
1、基因:能够表达和产生蛋白质和RNA的DNA序列,是决定遗传性状的功能单位。
2、基因组:细胞或生物体的一套完整单倍体的遗传物质的总和。
3、端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。
4、操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。
5、顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。
6、反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。在反式作用因子中,可直接或间接结合RNA聚合酶的,称为转录因子。
转录调节因子结构
转录激活域 脯氨酸富含域
谷氨酰胺富含域
蛋白质-蛋白质结合域
(二聚化结构域)
7、启动子:是RNA聚合酶特异性识别和结合的DNA序列。
8、增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列。它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。
9、基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。
10信息分子:调节细胞生命活动的化学物质。其中由细胞分泌的调节靶细胞生命活动的化学物质称为细胞间信息分子;而在细胞内传递信息调控信号的化学物质称为细胞内信息分子。
11、受体:是存在于靶细胞膜上或细胞内能特异识别生物活性分子并与之结合,进而发生生物学效应的的特殊蛋白质。
12、分子克隆:在体外对DNA分子按照即定目的和方案进行人工重组,将重组分子导入合适宿主,使其在宿主中扩增和繁殖,以获得该DNA分子的大量拷贝。
13、蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶。
14、蛋白磷酸酶:是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分子,与蛋白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。
15、基因工程:有目的的通过分子克隆技术,人为的操作改造基因,改变生物遗传性状的系列过程。
16、 载体:能在连接酶的作用下和外源DNA片段连接并运送DNA分子进入受体细胞的DNA分子。
17、转化:指质粒DNA或以它为载体构建的重组DNA导入细菌的过程。
18、感染:以噬菌体、粘性质粒和真核细胞病毒为载体的重组DNA分子,在体外经过包装成具有感染能力的病毒或噬菌体颗粒,才能感染适当的细胞,并在细胞内扩增。
19、转导:指以噬菌体为载体,在细菌之间转移DNA的过程,有时也指在真核细胞之间通过逆转录病毒转移和获得细胞DNA的过程。
20、转染:指病毒或以它为载体构建的重组子导入真核细胞的过程。
21、DNA变性:在物理或化学因素的作用下,导致两条DNA链之间的氢键断裂,而核酸分子中的所有共价键则不受影响。
22、DNA复性:当促使变性的因素解除后,两条DNA链又可以通过碱基互补配对结合形成DNA双螺旋结构。
23、退火:指将温度降至引物的TM值左右或以下,引物与DNA摸板互补区域结合形成杂交链。
24、筑巢PCR:先用一对外侧引物扩增含目的基因的大片段,再用内侧引物以大片段为摸板扩增获取目的基因。可以提高PCR的效率和特异性。
25、原位PCR:以组织固定处理细胞内的DNA或RNA作为靶序列,进行PCR反应的过程。
26、定量PCR:基因表达涉及的转录水平的研究常需要对mRNA进行定量测定,对此采用的PCR技术就叫定量PCR。
27、基因打靶:是指通过DNA定点同源重组,改变基因组中的某一特定基因,从而在生物活体内研究此基因的功能。
28、DNA芯片:DNA芯片技术是指在固相支持物上原位合成寡核苷酸或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。
29、错义突变:DNA分子中碱基对的取代,使得mRNA的某一密码子发生变化,由它所编码的氨基酸就变成另一种的氨基酸,使得多肽链中的氨基酸顺序也相应的发生改变的突变。
30、无义突变:由于碱基对的取代,使原来可以翻译某种氨基酸的密码子变成了终止密码子的突变。
正在加载中,请稍后...扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
书上说PCR中引物与游离的碱基结合,游离怎么解释(引物从5′‘端→3′ 端延)是不是DNA末端,如果是,怎么PCR产生长链和短链
作业帮用户
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
准确说是游离的核苷酸,游离的意思就是单独存在,没有和其他东西或者自身结合的意思开始的时候以长链为模板时候能扩出长链,以产生的长链为模板延伸的时候就产生短链了
什么地方找的,书上?几成可靠(拜托别误解,我找资料一般希望有比较可信的出处,虽然你说的很有道理,希望理解)
晕,上课学的。随便找本讲PCR的书,看懂了原理,这些都不是问题。
比较简单的书,有一本叫的,你翻倒PCR那一章,会找到一张讲PCR原理的图,能找到就看看吧
为您推荐:
其他类似问题
游离是指加入的四种原料碱基,即dNTP,以就是说未结合的
是引物先结合到片段上,然后再DNA聚合酶的作用下将体系中加入的dNTP按照碱基配对原则一个一个加上去,进行延伸,所以这里的游离碱基就是体系中加入的dNTP
就是没有用磷酸二酯键连接的碱基。
扫描下载二维码【图文】核酸的体外扩增1_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
核酸的体外扩增1
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢HACCP研讨会
食品实验室
食品培训中心
影响PCR的主要因素
  一、温度循环参数
  在PCR自动热循环中,最关键的因素是变性与退火的温度。如操作范例所示,其变性、退火、延伸的条件是:94℃60s, 37℃60s, 72℃120s,共25~30个循环,扩增片段500bp。在这里,每一步的时间应从反应混合液达到所要求的温度后开始计算。在自动热循环仪内由混合液原温度变至所要求温度的时间需要30~60s,这一迟滞时间的长短取决于几个因素,包括反应管类型、壁厚、反应混合液体积、热源(水浴或加热块)以及两步骤间的温度差,在设置热循环时应充分给以重视和考虑,对每一仪器均应进行实测。
  关于热循环时间的另一个重要考虑是两条引物之间的距离;距离越远,合成靶序列全长所需的时间也越长,前文给出的反应时间是按最适于合成长度500bp的靶序列拟定的。下面就各种温度的选择作一介绍。
  1.模板变性温度变性温度是决定PCR反应中双链DNA解链的温度,达不到变性温度就不会产生单链DNA模板,PCR也就不会启动。变性温度低则变性不完全,DNA双链会很快复性,因而减少产量。一般取90~95℃。样品一旦到达此温度宜迅速冷却到退火温度。DNA变性只需要几秒种,时间过久没有必要;反之,在高温时间应尽量缩短,以保持Taq DNA聚合酶的活力,加入Taq DNA聚合酶后最高变性温度不宜超过95℃。
  2.引物退火温度退火温度决定PCR特异性与产量;温度高特异性强,但过高则引物不能与模板牢固结合,DNA扩增效率下降;温度低产量高,但过低可造成引物与模板错配,非特异性产物增加。一般先由37℃反应条件开始,设置一系列对照反应,以确定某一特定反应的最适退火温度。也可根据引物的(G C)%含量进行推测,把握试验的起始点,一般试验中退火温度Ta(annealing temperature)比扩增引物的融解温度TTm(melting temperature)低5℃,可按公式进行计算:
Ta = Tm - 5℃= 4(G C) 2(A T) -5℃
  其中A,T,G,C分别表示相应碱基的个数。例如,20个碱基的引物,如果(G C)%含量为50%时,则Ta的起点可设在55℃。在典型的引物浓度时(如0.2&mol/L),退火反应数秒即可完成,长时间退火没有必要。
  3.引物延伸温度温度的选择取决于Taq DNA聚合酶的最适温度。一般取70~75℃,在72℃时酶催化核苷酸的标准速率可达35~100个核苷酸/秒。每分钟可延伸1kb的长度,其速度取决于缓冲溶液的组成、pH值、盐浓度与DNA模板的性质。扩增片段如短于150bp,则可省略延伸这一步,而成为双温循环,因Taq DNA聚合酶在退火温度下足以完成短序列的合成。对于100~300bp之间的短序列片段,采用快速、简便的双温循环是行之有效的。此时,引物延伸温度与退火温度相同。对于1kb以上的DNA片段,可根据片段长度将延伸时间控制在1~7min,与此同时,在PCR缓冲液中需加入明胶或BSA试剂,使Taq DNA聚合酶在长时间内保持良好的活性与稳定性;15%~20%的甘油有助于扩增2.5kb左右或较长DNA片段。
  4.循环次数常规PCR一般为25~40个周期。一般的错误是循环次数过多,非特异性背景严重,复杂度增加。当然循环反应的次数太少,则产率偏低。所以,在保证产物得率前提下,应尽量减少循环次数。
  扩增结束后,样品冷却并置4℃保存。
  二、引物引物设计
  要扩增模板DNA,首先要设计两条寡核苷酸引物,所谓引物,实际上就是两段与待扩增靶DNA序列互补的寡核苷酸片段,两引物间距离决定扩增片段的长度,两引物的5&端决定扩增产物的两个5&末端位置。由此可见,引物是决定PCR扩增片段长度、位置和结果的关键,引物设计也就更为重要。
  引物设计的必要条件是与引物互补的靶DNA序列必须是已知的,两引物之间的序列未必清楚,这两段已知序列一般为15~20个碱基,可以用DNA合成仪合成与其对应互补的二条引物,除此之外,引物设计一般遵循的原则包括:
  1.引物长度根据统计学计算,长约17个碱基的寡核苷酸序列在人的基因组中可能出现的机率的为1次。因此,引物长度一般最低不少于16个核苷酸,而最高不超过30个核苷酸,最佳长度为20~24个核苷酸。这样短的寡核苷酸在聚合反应温度(通过72℃)下不会形成稳定的杂合体。有时可在5&端添加不与模板互补的序列,如限制性酶切位点或启动因子等,以完成基因克隆和其他特殊需要;引物5&端生物素标记或荧光标记可用于微生物检测等各种目的。
  有时引物不起作用,理由不明,可移动位置来解决。
  2.(G C)%含量引物的组成应均匀,尽量避免含有相同的碱基多聚体。两个引物中(G C)%含量应尽量相似,在已知扩增片段(G C)%含量时宜接近于待扩增片段,一般以40%~60%为佳。
  3.引物内部应避免内部形成明显的次级结构,尤其是发夹结构(hairpin structures)。
  4.引物之间两个引物之间不应发生互补,特别是在引物3&端,即使无法避免,其3&端互补碱基也不应大于2个碱基,否则易生成&引物二聚体&或&引物二倍体&(Primer dimer)。所谓引物二聚体实质上是在DNA聚合酶作用下,一条引物在另一条引物序列上进行延伸所形成的与二条引物长度相近的双链DNA片段,是PCR常见的副产品,有时甚至成为主要产物。
  另外,两条引物之间避免有同源序列,尤为连续6个以上相同碱基的寡核苷酸片段,否则两条引物会相互竞争模板的同一位点;同样,引物与待扩增靶DNA或样品DNA的其它序列也不能存在6个以上碱基的同源序列。否则,引物就会与其它位点结合,使特异扩增减少,非特异扩增增加。
  5.引物3&端配对DNA聚合酶是在引物3&端添加单核苷酸,所以,引物3&端5~6个碱基与靶DNA的配对要求必须精确和严格,这样才能保证PCR有效扩增。
  引物设计是否合理可用PCRDESN软件和美国PRIMER软件进行计算机检索来核定。
  人工合成的寡核苷酸引于最好经过色谱(层析)纯化或PAGE纯化,以除去未能合成至全长的短链等杂质。纯化引物在25%乙腈溶液中4℃保存可阻止微生物的生长;一般情况下,不用的引物应保存在-20℃冰箱中,在液体中引物能保存6个月,冻干后可保存1~2年。
  三、DNA聚合酶
  早在1956年Kornberg等就从大肠杆菌提取液中发现了DNA聚合酶,并且得到了DNA聚合酶Ⅰ纯品。DNA聚合酶Ⅰ是由分子量为109000的一条多肽链构成,此酶可被枯草杆菌蛋白酶分解为两个片段,一个片段分子量为76000,有聚合酶活性,并有3&&5外切酶活力,即Klenow片段(Klenow fragment)。另一个片段分子量为34000,具有5&&&3&外切酶活力。因此,DNA聚合酶具有几种功能:一是聚合作用,以DNA为模板,将dNTP中的脱氧单核苷酸逐个加到3-OH末端。二是有&3&&5&外切酶活力,能识别和消除错配的引物末端,与复制过程中校正功能有关。三是5&&3&外切酶活力,它能从5&端水解核苷酸,还能经过几个核苷酸起作用,切除错配的核苷酸。1985年Mullis 等发明了PCR方法,以Klenow片段完成&-珠蛋白的PCR后,世界上许多实验室就考虑用耐热DNA聚合酶代替Klenow片段进行PCR,使耐热多聚酶的研究得以迅速发展。人们从生活于60℃(B.Stearothermophilus)到87℃(S.Solfatavicus)的许多菌中分离纯化出耐热DNA聚合酶,但有些酶不能耐受DNA变性所需温度,所以无法应用于PCR。现就PCR反应中常用的DNA聚合酶等作一详细介绍。
  1.Taq DNA聚合酶用Taq DNA聚合酶代替大肠杆菌DNA聚合酶Ⅰ的Klenow片段是使PCR普及应用的关键。Klenow片段不能耐受95℃的双链DNA变性温度,所以每次循环都要加入新酶;而Taq DNA聚合酶可以耐受93~95℃的高温,避免了不断补加多聚酶的繁琐操作,同时使退火和延伸温度得以提高,减少了非特异性产物和DNA二级结构对PCR的干扰,增进了PCR特异性、产量和敏感度,二者相比,其主要区别在于:①Klenow酶的最适温度为37℃,扩增的产物并非全是目的序列,需用探针检测。Taq酶则不仅产率高而特异性也高。它的最适温度为74~75℃。因而使退火温度可以提高,使退火严格性提高,减少错配引物的延伸。②循环后期酶量渐感不足而产生平坡。到达平玻的循环次数,Klenow酶为20个(均用1&g基因组DNA开始)而Taq酶为30个。③延伸片段长度Taq酶为10kb以内,而Klenow酶为400bp以内。
  Taq酶由水栖高温菌(Thermus aquatics)YT1蓖株中分离而得。此菌于1969年由Brock分离自美国黄石公园温泉,作为栖热杆菌的标准菌株,其生长温度为70~75℃。最初从中分离到分子量60~68KDa,比活性为U/mg的DNA聚合酶。后来Cetus公司的Kary Mullis等又分离到比活为20万U/mg的纯酶,分子量为93910。此种9.4KDa酶的最适温度为75~80℃,与单纯核苷酸的结合率(Kcat)可达150核苷酸(nt)/s酶分子。以M13模板,用富含G C的30bp引物延伸,70℃时Kact&60nt/s;55℃可达24nt/s;37℃时为1.5nt/s,而22℃时低至0.25nt/s。高于90℃时DNA合成活性甚差,这种高温条件下,引物与模板已不能牢固结合。
  在PCR反应混合液中,Taq酶于92.5℃,95℃及97.5℃保持其50%活力的时间分别为130、40及5~6min,在50次循环的PCR中当管内最高温度为95℃。每循环为20s时尚可保持65%活力。Taq 酶在95℃的半寿期为40min,故在PCR循环中选用的变性温度,不宜高于95℃。
  Taq酶现已可用基因重组的方法生产,商品名为Ampli Taq(Cetus公司)。Taq酶的完整基因长2499bp,在大肠杆菌中表达生产,含832个氨基酸。在氨基酸序列上与大肠杆菌DNA聚合酶Ⅰ有38%是一致的,包括对dNTP结合,引物与模板作用区均存在于Taq酶中。
  Taq酶具有依赖DNA合成的5&&&3&外切酶活性,因此,模板上有一段退火的3&-磷酸化的&阻断物&,会被逐个切除而不会阻止来自上游引物链的延伸,而对于5&-32P标记的合成寡核苷酸引物,则无论是单链或是与模板复性,都未发现降解,所以该种活性不会影响PCR结果。Taq酶没有3&&&5&外切酶活性,如果发生dNTP错误掺入,这种酶没有校正能力,因此运用Taq酶进行PCR,产物中点突变较多,对克隆等不太有利。一般错掺率为1.25&10-4~1&10-5(4&dNTPs浓度分别为200&mol/L,Mg2 为1.5mmol/L,在55℃退火)。但不含3&&5&外切酶活性对测序有利。
  2.影响酶活力的因素Taq酶的活力受Mg2 离子的影响。用鲱精DNA为模板,总dNTP浓度0.7~0.8mmol/L,Mg2 为2.0mmol/L时激活能力最高。浓度超过此值产生抑制。10mmol/l MgCl2抑制活力达40%~50%。dNTP能与Mg2 结合,故游离Mg2 只是结合后剩余的量。若总dNTP浓度高至4~6mmol/L时,Taq酶活力要降低20~30%,即底物抑制。
  dNTP浓度低时PCR产率及特异性均增高,适合于用扩增掺入法标记生物素及放射性元素。当100&l PCR液中含dNTP各40&mol/L时就足以合成2.6&g的DNA(dNTP消耗一半)。
  用鲱精DNA,70℃,10min内dNTP的掺入量计算,标准条件为100%。
  纯9.4KDa Taq酶不含3&&5&核酸外切酶活力。误掺入率取决于dNTP浓度。但Taq酶具有DNA依赖的链移位5&&3&核酸外切酶活力。对5&&3&32P标记寡核苷酸单链,或与MB模板杂交时均只有极少的降解力。
  中等浓度KCl能刺激Taq酶合成活力达50%~60%,最佳KCl浓度为50mmol/L,浓度更高有抑制作用,&200mmol/L的KCl可使酶失活。
  加入50mmol/L NH4Cl或NH4Ac或NaCl,可产生中度抑制或无作用。
  低浓度尿素、DMSO、DMF或甲酰胺影响不大,吐温20/NP40可消除SDS(0.01%及0.1%)的抑制作用。
  3.第二代耐热DNA聚合酶Stoffel片段:Cetus公司的Stoffel将Taq DNA聚合酶的5&&3&外切酶活性片段(N端289个氨基酸)去除,称为stoffel片段。其97.5℃的半衰期从Taq DNA聚合酶的5~6min提高到20min,同时该酶片段也对两个或更多模板位点的扩增反应即复合PCR(Multiplex PCR)更为有利。
  VentTM DNA多聚酶:是美国New England Biolabs公司从潜水艇排气孔(Vent)中分离的超级嗜热菌-能生长于98℃中的Thermococcus litoralis中分离纯化得到的,故名Vent酶。它的一些酶学性质较Taq DNA聚合酶更为优越,它能耐100℃高温且2h以上仍有活力,并且具有3&&5&外切酶活性的校正能力,错误扩增的机率比Taq酶降低一倍。后来该公司又从深水潜艇(2010m)排气孔分离的能在104℃生长的Pyococcus菌GB-D株植入Deep Vent DNA聚合酶基因而表达的Deep Vent DNA聚合酶,在95℃的半寿期达23h(Vent酶为6.7h,Taq酶为1h)。
  4.RTth逆转录酶(rTth Reverse Transcriptase)目前逆转录-PCR(RT-PCR)的发展很快,所以对耐热的依赖于RNA的DNA多聚酶的研究也有进展。有实验表明Taq DNA多聚酶有依赖于RNA的DNA聚合酶活性,但活性较弱。Cetus公司于1991年推出一种rTth Reverse Tran-scriptase,有很好的依赖于RNA的耐热DNA聚合酶活性和依赖于DNA的耐热DNA聚合酶活性,二种活性分别依赖于Mn2 Mg2 ,这样就可分别控制酶活性。利用该酶只需250ng的总RNA即可有效地进行RT-PCR,得到特异的DNA片段,从而非常有利于逆转录PCR的发展。
  耐热DNA聚合酶的研究近几年来得到长足的发展,这在PCR发展中起到了重要的作用。我们相信随着进一步的研究,将使人们对耐热DNA聚合酶的认识和应用更进一步地发展。
  我国的PCR研究发展很快,其关键试剂-耐热DNA聚合酶-也已有几个实验室能够分离纯化,如复旦大学遗传学研究所、华美公司、中国医学科学院基础医学研究所。后二者的菌株为Thermus aquaticus YT-1。前者则是从自己筛选的嗜热菌中分离纯化,复旦大学遗传所亦已成功地克隆了该聚合酶的基因并获得了耐热F4DNA聚合酶,其酶学性质非常接近于Taq DNA聚合酶,为我国PCR的开展提供了保证。
  四、影响PCR特异性的因素
  通过上述内容。可以看出有许多因素可以影响PCR的特异性,在此我们作一归纳,供大家参考:①退火步骤的严格性:提高退火温度可以减少不匹配的杂交,从而提高特异性。②减短退火时间及延伸时间可以减少错误引发及错误延伸。③引物二聚体是最常见的副产品,降低引物及酶的浓度也可以减少错误引发,尤其是引物的二聚化。④改变MgCl2(有时KCl)浓度可以改进特异性,这可能是提高反应严格性或者对Taq酶的直接作用。⑤模板中如果存在次级结构,例如待扩增的片段易自行形成发夹结构时,可在PCR混合物中的4&dNTPs中加入7-脱氮-2&-脱氧鸟苷-5&-三磷酸(7-deaza-2&-deoxyguanosine-5&-trihosphate)(de7GTP)。用de7GTP与dGTP比例为3:1的混合物(150&mol/l de7GTP 50&mol/L dGTP)代替200&mol/l dGTP,则可阻非特异性产物的生成。
  五、扩增平坡
  扩增反应并不是可以无穷地进行下去的,经过一定的循环周期后需扩增的片段不再按指数增多而逐渐进入平坡;进入平坡的循环次数,取决于起始时存在的模板拷贝数以及合成的DNA总量。所谓平坡就是批PCR循环的后期,合成产物达0.3~1pmol时,由于产物的堆积,使原来以指数增加的速率变成平坦的曲线。
  造成PCR进入平坡的原因有:引物和dNTP等消耗完毕、Taq酶失活,这几中因素在标准反应中均不会出现。此外,还有几种可能:
  1.底物过剩  因DNA合成量多于反应液中存在的Taq酶,在100&l反应液中含2.5Utaq酶而DNA合成量达1&g(3nmol脱氧核苷酸)时,开始变为底物过剩。延长延伸时间或添加Taq酶,可以克服之。但不实用,因每进行下一循环就要延长延伸时间一倍及多加一倍Taq酶,才能继续保持指数增长。
  2.非特异性扩增产物的竞争  与上述情况密切相关,此时不需要的DNA片段与需要的片段同时竞争聚合酶,要克服这一情况是要提高反应特异性,使不需要片段不能大量积聚。
  3.退火时产物的单链自己缔合  两条单链的DNA片段在退火时除了与引物缔合外,也可以自行缔合,这也会阻止产品增多。当产物浓度到达10pmol/100&l时即可发生此现象,除稀释外无法克服。
  4.变性在高浓度产物条件下,产物解链不完全,以及最终产物的阻化作用(焦磷酸化,双链DNA)。
  总而言之,PCR的条件是随系统的而异的,并无统一的最佳条件,先选用通用的条件扩增,然后稍稍改变各参数,可以达到优化,以取得优良的特异性和产率。
©  食品伙伴网 All Rights Reserved

我要回帖

更多关于 扩增基因全长引物设计 的文章

 

随机推荐