怎么用隔离法解释浦东t1到浦东t2航站楼t2内加速度增加

牛顿运动定律解决常见问题:

Ⅰ、动力学的两类基本问题:已知力求运动,已知运动求力

①根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况;根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。

②分析这两类问题的关键是抓住受力情况和运动情况的桥梁——加速度。

③求解这两类问题的思路,可由下面的框图来表示。


物体有向上的加速度(向上加速运动时或向下减速运动)称物体处于超重,处于超重的物体对支持面的压力F

(或对悬挂物的拉力)大于物体的重力mg,即F

=mg+ma;物体有向下的加速度(向下加速运动或向上减速运动)称物体处于失重,处于失重的物体对支持面的压力F

(或对悬挂物的拉力)小于物体的重力mg,即F

连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统。处理方法——整体法与隔离法:


当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。

        刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。

        轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。

②解决此类问题的基本方法

a、分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);

b、分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);

c、求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。


分析物体在传送带上如何运动的方法

①分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。具体方法是:

a、分析物体的受力情况

        在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。

b、明确物体运动的初速度

        分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。

c、弄清速度方向和物体所受合力方向之间的关系

        物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。

②常见的几种初始情况和运动情况分析

a、物体对地初速度为零,传送带匀速运动(也就是将物体由静止放在运动的传送带上)

是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V

是物体对地运动初速度。(以下的说明中个字母的意义与此相同)


        物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。其加速度由牛顿第二定律

        在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。

b、物体对地初速度不为零其大小是V

,且与V的方向相同,传送带以速度V匀速运动(也就是物体冲到运动的传送带上)

的方向与V的方向相同且V

小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V

的匀加速运动,直至与传送带达到共同速度匀速运动。

的方向与V的方向相同且V

大于V,则物体相对于传送带向前运动,它受到的摩擦力方向向后,如图2所示,摩擦力f的方向与初速度V

方向相反,物体相对于地做初速度是V

的匀减速运动,一直减速至与传送带速度相同,之后以V匀速运动。


的方向做匀减速直线运动直至对地的速度为零。然后物体反方向(也就是沿着传送带运动的方向)做匀加速直线运动。

小于V,物体再次回到出发点时的速度变为-V

,全过程物体受到的摩擦力大小和方向都没有改变。

大于V,物体在未回到出发点之前与传送带达到共同速度V匀速运动。


        说明:上述分析都是认为传送带足够长,若传送带不是足够长的话,在图2和图3中物体完全可能以不同的速度从右侧离开传送带,应当对题目的条件引起重视。


物体在传送带上相对于传送带运动距离的计算

①弄清楚物体的运动情况,计算出在一段时间内的位移X

②计算同一段时间内传送带匀速运动的位移X

③两个位移的矢量之△X=X

就是物体相对于传送带的位移。

说明:传送带匀速运动时,物体相对于地的加速度和相对于传送带的加速度是相同的。


传送带系统功能关系以及能量转化的计算

物体与传送带相对滑动时摩擦力的功

①滑动摩擦力对物体做的功

是物体对地的位移,滑动摩擦力对物体可能做正功,也可能做负功,物体的动能可能增加也可能减少。

②滑动摩擦力对传送带做的功

,也就是说滑动摩擦力对传送带可能做正功也可能做负功。例如图2中物体的速度大于传送带的速度时物体对传送带做正功。

说明:当摩擦力对于传送带做负功时,我们通常说成是传送带克服摩擦力做功,这个功的数值等于外界向传送带系统输入能量。

③摩擦力对系统做的总功等于摩擦力对物体和传送带做的功的代数和。

结论:滑动摩擦力对系统总是做负功,这个功的数值等于摩擦力与相对位移的积。

④摩擦力对系统做的总功的物理意义是:物体与传送带相对运动过程中系统产生的热量,即

4、应用牛顿第二定律时常用的方法:整体法和隔离法、正交分解法、图像法、临界问题。

第二部分  牛顿运动定律

2、观念意义,突破“初态困惑”

c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。

对于非惯性系的定律修正——引入惯性力、参与受力分析

a、同性质(但不同物体)

b、等时效(同增同减)

c、无条件(与运动状态、空间选择无关)

第二讲 牛顿定律的应用

一、牛顿第一、第二定律的应用

单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。

应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。

1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中(      

A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动

B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力

C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点

D、工件在皮带上有可能不存在与皮带相对静止的状态

解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。

较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t → 0 ,a →  ,则ΣFx   ,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)

此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出

只有当L > 时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。

进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0 ,其它条件不变,再求t(学生分以下三组进行)——

2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:

① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?

② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?

解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。

第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。

二、牛顿第二定律的应用

应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。

在难度方面,“瞬时性”问题相对较大。

1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。

解说:受力分析 → 根据“矢量性”定合力方向  牛顿第二定律应用

思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)

进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)

进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。

解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。

分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则

对灰色三角形用正弦定理,有

最后运用牛顿第二定律即可求小球加速度(即小车加速度)

2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。

解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。

正交坐标的选择,视解题方便程度而定。

解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程

代入方位角θ,以上两式成为

解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。

显然,独立解T值是成功的。结果与解法一相同。

思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N = mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m 。)

学生活动:用正交分解法解本节第2题“进阶练习2”

进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。

解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。

3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。

解说:第一步,阐明绳子弹力和弹簧弹力的区别。

(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?

结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。

第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。

知识点,牛顿第二定律的瞬时性。

应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?

三、牛顿第二、第三定律的应用

要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。

在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。

对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。

补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——

其中Σ只能是系统外力的矢量和,等式右边也是矢量相加。

1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?

解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。

思考:如果水平面粗糙,结论又如何?

解:分两种情况,(1)能拉动;(2)不能拉动。

第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。

第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。

答:若棒仍能被拉动,结论不变。

若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N

应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2 ,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2 ,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:

答:B 。(方向沿斜面向上。)

思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?

答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。

2、如图15所示,三个物体质量分别为m1 、m2和m3 ,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?

此题对象虽然有三个,但难度不大。隔离m2 ,竖直方向有一个平衡方程;隔离m1 ,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。

思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。

解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:

最后用整体法解F即可。

3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?

解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。

解棒的加速度a1十分容易。

当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。

解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、

1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。

解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。

(学生活动)定型判断斜面的运动情况、滑块的运动情况。

位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。

(学生活动)这两个加速度矢量有什么关系?

沿斜面方向、垂直斜面方向建x 、y坐标,可得:

隔离滑块和斜面,受力图如图20所示。

对滑块,列y方向隔离方程,有:

对斜面,仍沿合加速度a2方向列方程,有:

解①②③④式即可得a2 。

(学生活动)思考:如何求a1的值?

2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。

解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。

(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)

定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:

设全程时间为t ,则有:

而隔离滑套,受力图如图23所示,显然:

另解:如果引进动力学在非惯性系中的修正式 Σ+ * = m (注:*为惯性力),此题极简单。过程如下——

以棒为参照,隔离滑套,分析受力,如图24所示。

注意,滑套相对棒的加速度a是沿棒向上的,故动力学方程为:

而且,以棒为参照,滑套的相对位移S就是b ,即:

解(1)(2)(3)式就可以了。

教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。

例题选讲针对“教材”第三章的部分例题和习题。

原标题:高中物理易忘知识点总结,假期看一遍!

1、受力分析,往往漏“力”百出

对物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法”与“隔离法”两种。

对物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。

在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。在受力分析过程中,特别是在“力、电、磁”综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。

还要说明的是在分析某个力发生变化时,运用的方法是数学计算法、动态矢量三角形法(注意只有满足一个力大小方向都不变、第二个力的大小可变而方向不变、第三个力大小方向都改变的情形)和极限法(注意要满足力的单调变化情形)。

摩擦力包括静摩擦力,因为它具有“隐敝性”、“不定性”特点和“相对运动或相对趋势”知识的介入而成为所有力中最难认识、最难把握的一个力,任何一个题目一旦有了摩擦力,其难度与复杂程度将会随之加大。

最典型的就是“传送带问题”,这问题可以将摩擦力各种可能情况全部包括进去,建议高三党们从下面四个方面好好认识摩擦力:

(1)物体所受的滑动摩擦力永远与其相对运动方向相反。这里难就难在相对运动的认识;说明一下,滑动摩擦力的大小略小于最大静摩擦力,但往往在计算时又等于最大静摩擦力。还有,计算滑动摩擦力时,那个正压力不一定等于重力。

(2)物体所受的静摩擦力永远与物体的相对运动趋势相反。显然,最难认识的就是“相对运动趋势方”的判断。可以利用假设法判断,即:假如没有摩擦,那么物体将向哪运动,这个假设下的运动方向就是相对运动趋势方向;还得说明一下,静摩擦力大小是可变的,可以通过物体平衡条件来求解。

(3)摩擦力总是成对出现的。但它们做功却不一定成对出现。其中一个最大的误区是,摩擦力就是阻力,摩擦力做功总是负的。无论是静摩擦力还是滑动摩擦力,都可能是动力。

(4)关于一对同时出现的摩擦力在做功问题上要特别注意以下情况:

可能两个都不做功。(静摩擦力情形)

可能两个都做负功。(如子弹打击迎面过来的木块)

可能一个做正功一个做负功但其做功的数值不一定相等,两功之和可能等于零(静摩擦可不做功)、

可能小于零(滑动摩擦)

也可能大于零(静摩擦成为动力)。

可能一个做负功一个不做功。(如,子弹打固定的木块)

可能一个做正功一个不做功。(如传送带带动物体情形)

(建议结合讨论“一对相互作用力的做功”情形)

3、对弹簧中的弹力要有一个清醒的认识

弹簧或弹性绳,由于会发生形变,就会出现其弹力随之发生有规律的变化,但要注意的是,这种形变不能发生突变(细绳或支持面的作用力可以突变),所以在利用牛顿定律求解物体瞬间加速度时要特别注意。

还有,在弹性势能与其他机械能转化时严格遵守能量守恒定律以及物体落到竖直的弹簧上时,其动态过程的分析,即有最大速度的情形。

4、对“细绳、轻杆”要有一个清醒的认识

在受力分析时,细绳与轻杆是两个重要物理模型,要注意的是,细绳受力永远是沿着绳子指向它的收缩方向,而轻杆出现的情况很复杂,可以沿杆方向“拉”、“支”也可不沿杆方向,要根据具体情况具体分析。

5、关于小球“系”在细绳、轻杆上做圆周运动与在圆环内、圆管内做圆周运动的情形比较

这类问题往往是讨论小球在最高点情形。其实,用绳子系着的小球与在光滑圆环内运动情形相似,刚刚通过最高点就意味着绳子的拉力为零,圆环内壁对小球的压力为零,只有重力作为向心力;而用杆子“系”着的小球则与在圆管中的运动情形相似,刚刚通过最高点就意味着速度为零。因为杆子与管内外壁对小球的作用力可以向上、可能向下、也可能为零。还可以结合汽车驶过“凸”型桥与“凹”型桥情形进行讨论。

6、对物理图像要有一个清醒的认识

物理图像可以说是物理考试必考的内容。可能从图像中读取相关信息,可以用图像来快捷解题。随着试题进一步创新,现在除常规的速度(或速率)-时间、位移(或路程)-时间等图像外,又出现了各种物理量之间图像,认识图像的最好方法就是两步:一是一定要认清坐标轴的意义;二是一定要将图像所描述的情形与实际情况结合起来。(关于图像各种情况我们已经做了专项训练。)

7、对牛顿第二定律F=ma要有一个清醒的认识

第一、这是一个矢量式,也就意味着a的方向永远与产生它的那个力的方向一致。(F可以是合力也可以是某一个分力)

第二、F与a是关于“m”一一对应的,千万不能张冠李戴,这在解题中经常出错。主要表现在求解连接体加速度情形。

第三、将“F=ma”变形成F=m△v/△t,其中,a=△v/△t得出△v=a△t这在“力、电、磁”综合题的“微元法”有着广泛的应用(近几年连续考到)。

第四、验证牛顿第二定律实验,是必须掌握的重点实验,特别要注意:

(1)注意实验方法用的是控制变量法;

(2)注意实验装置和改进后的装置(光电门),平衡摩擦力,沙桶或小盘与小车质量的关系等;

(4)注意数据处理时,对纸带匀加速运动的判断,利用“逐差法”求加速度。(用“平均速度法”求速度)

(5)会从“a-F”“a-1/m”图像中出现的误差进行正确的误差原因分析。

8、对“机车启动的两种情形”要有一个清醒的认识

机车以恒定功率启动与恒定牵引力启动,是动力学中的一个典型问题。

(1)以恒定功率启动,机车总是做的变加速运动(加速度越来越小,速度越来越大);以恒定牵引力启动,机车先做的匀加速运动,当达到额定功率时,再做变加速运动。最终最大速度即“收尾速度”就是vm=P额/f。

(2)要认清这两种情况下的速度-时间图像。曲线的“渐近线”对应的最大速度。

还要说明的,当物体变力作用下做变加运动时,有一个重要情形就是:当物体所受的合外力平衡时,速度有一个最值。即有一个“收尾速度”,这在电学中经常出现,如:“串”在绝缘杆子上的带电小球在电场和磁场的共同作用下作变加速运动,就会出现这一情形,在电磁感应中,这一现象就更为典型了,即导体棒在重力与随速度变化的安培力的作用下,会有一个平衡时刻,这一时刻就是加速度为零速度达到极值的时刻。凡有“力、电、磁”综合题目都会有这样的情形。

9、对物理的“变化量”、“增量”、“改变量”和“减少量”、“损失量”等要有一个清醒的认识

研究物理问题时,经常遇到一个物理量随时间的变化,最典型的是动能定理的表达(所有外力做的功总等于物体动能的增量)。这时就会出现两个物理量前后时刻相减问题,小伙伴们往往会随意性地将数值大的减去数值小的,而出现严重错误。

其实物理学规定,任何一个物理量(无论是标量还是矢量)的变化量、增量还是改变量都是将后来的减去前面的。(矢量满足矢量三角形法则,标量可以直接用数值相减)结果正的就是正的,负的就是负的。而不是错误地将“增量”理解增加的量。显然,减少量与损失量(如能量)就是后来的减去前面的值。

10、两物体运动过程中的“追遇”问题

两物体运动过程中出现的追击类问题,在高考中很常见,但考生在这类问题则经常失分。常见的“追遇类”无非分为这样的九种组合:一个做匀速、匀加速或匀减速运动的物体去追击另一个可能也做匀速、匀加速或匀减速运动的物体。显然,两个变速运动特别是其中一个做减速运动的情形比较复杂。

虽然,“追遇”存在临界条件即距离等值的或速度等值关系,但一定要考虑到做减速运动的物体在“追遇”前停止的情形。另外解决这类问题的方法除利用数学方法外,往往通过相对运动(即以一个物体作参照物)和作“V-t”图能就得到快捷、明了地解决,从而既赢得考试时间也拓展了思维。

值得说明的是,最难的传送带问题也可列为“追遇类”。还有在处理物体在做圆周运动追击问题时,用相对运动方法最好。如,两处于不同轨道上的人造卫星,某一时刻相距最近,当问到何时它们第一次相距最远时,最好的方法就将一个高轨道的卫星认为静止,则低轨道卫星就以它们两角速度之差的那个角速度运动。第一次相距最远时间就等于低轨道卫星以两角速度之差的那个角速度做半个周运动的时间。

11、万有引力中公式的使用最会出现张冠李戴的错误

万有引力部分是高考必考内容,这部分内容的特点是公式繁杂,主要以比例的形式出现。其实,只要掌握其中的规律与特点,就会迎刃而解的。最主要的是在解决问题时公式的选择。最好的方法是,首先将相关公式一一列来,即:mg=GMm/R2=mv2/R=mω2R=m4π2/T2,再由此对照题目的要求正确的选择公式。

(1)地球上的物体所受的万有引力就认为是其重力(不考虑地球自转)。

(2)卫星的轨道高度要考虑到地球的半径。

(3)地球的同步卫星一定有固定轨道平面(与赤道共面且距离地面高度为3.6×107m)、固定周期(24小时)。

(4)要注意卫星变轨问题。要知道,所有绕地球运行的卫星,随着轨道高度的增加,只有其运行的周期随之增加,其它的如速度、向心加速度、角速度等都减小。

12、有关“小船过河”的两种情形

“小船过河”类问题是一个典型的运动学问题,一般过河有两种情形:即最短时间(船头对准对岸行驶)与最短位移问题(船头斜向上游,合速度与岸边垂直)。

这里特别的是,过河位移最短情形中有一种船速小于水速情况,这时船头航向不可能与岸边垂直,须要利用速度矢量三角形进行讨论。

另外,还有在岸边以恒定速度拉小船情形,要注意速度的正确分解。

13、有关“功与功率”的易错点

功与功率,贯穿着力学、电磁学始终。特别是变力做功,慎用力的平均值处理,往往利用动能定理。某一个力做功的功率,要正确认清P=F·v的含意,这个公式可能是即时功率也可能是平均功率,这完全取决于速度。

但不管怎样,公式只是适用力的方向与速度一致情形。如果力与速度垂直则该力做功的功率一定为零(如单摆在最低点小球重力的功率,物体沿斜面下滑时斜面支持力的功率都等于零),如果力与速度成一角度,那么就要进一步进行修正。

在计算电路中功率问题时,要注意电路中的总功率、输出功率与电源内阻上的发热功率之间的关系。特别是电源的最大输出功率的情形(即外电路的电阻小于等效内阻情形)。还有必要掌握会利用图像来描述各功率变化规律。

14、有关“机械能守恒定律运用”的注意点

机械能守恒定律成立的条件是只有重力或弹簧的弹力做功。题目中能否用机械能守恒定律最显著的标志是“光滑”二字。

机械能守恒定律的表达式有多种,要认真区别开来。如果用E表示总的机械能,用EK表示动能,EP表示势能,在字母前面加上“△”表示各种能量的增量,则机械能守恒定律的数学表达式除一般表达式外,还有如下几种:E1=E2;EP1+EK1=EP2+EK2;△E=0;△E1+△E2=0;△EP=-△EK;△EP+△EK=0等。

需要注意的,凡能利用机械能守恒解决的问题,动能定理一定也能解决,而且动能定理不需要设定零势能,更表现其简明、快捷的优越性。

15、关于各种“转弯”情形

在实际生活中,人沿圆形跑道转弯、骑自行车转弯、汽车转弯、火车转弯还有飞机转弯等等各种“转弯”情形都不尽相同。唯一共同的地方就是必须有力提供它们“转弯”时做圆周运动的向心力。

显然,不同“转弯”情形所提供向心力的不一定是相同的:

(1)人沿圆形轨道转弯所需的向心力由人的身体倾斜使自身重力产生分力以及地面对脚的静摩擦力提供;

(2)人骑自行车转弯情形与人转弯情形相似;

(3)汽车转弯情形靠的是地面对轮胎提供的静摩擦力得以实现的;

(4)火车转弯则主要靠的是内、外轨道的高度差产生的合力(火车自身重力与轨道支持力,注意不是火车重力的分力)来实施转弯的;

(5)飞机在空中转弯,则完全靠改变机翼方向,在飞机上下表面产生压力差来提供向心力而实施转弯的。

16、要认清和掌握电场、电势(电势差)、电势能等基本概念

首先可以将“电场”与“重力场”相类比(还可以将磁场一同来类比,更容易区别与掌握),电场力做功与重力做功相似,都与路径无关,重力做正功重力势能一定减少,同样电场力做正功那么电势能一定减少,反之亦然。

由此便可以容易认清引入电势的概念。电势具有相对意义,理论上可以任意选取零势能点,因此电势与场强是没有直接关系的;电场强度是矢量,空间同时有几个点电荷,则某点的场强由这几个点电荷单独在该点产生的场强矢量叠加;电荷在电场中某点具有的电势能,由该点的电势与电荷的电荷量(包括电性)的乘积决定,负电荷在电势越高的点具有的电势能反而越小;带电粒子在电场中的运动有多种运动形式,若粒子做匀速圆周运动,则电势能不变。(另外,还要注意库仑扭秤与万有定律中卡文迪许扭秤装置进行比较。)

17、要熟悉电场线和等势面与电场特性的关系

在熟悉静电场线和等势面的分布特征与电场特性的关系,特别注意下面几点:

⑴电场线总是垂直于等势面;

⑵电场线总是由电势高的等势面指向电势低的等势面。

同时,一定要清楚在匀强电场(非匀强电场公式不成立)中,可以用U=Ed公式来进行定量计算,其中d是沿场强方向两点间距离。

另外还要的是,两个等量异种电荷的中垂线与两个同种电荷的中垂线的电场分布及电势分布的特点。

18、要认清匀强电场与电势差的关系、电场力做功与电势能变化的关系

在由电荷电势能变化和电场力做功判断电场中电势、电势差和场强方向的问题中,先由电势能的变化和电场力做功判断电荷移动的各点间的电势差,再由电势差的比较判断各点电势高低,从而确定一个等势面,最后由电场线总是垂直于等势面确定电场线的方向。

由此可见,电场力做功与电荷电势能的变化关系具有非常重要的意义。注意在计算时,要注意物理量的正负号。

19、要认清带电粒子经加速电场加速后进入偏转电场的运动情形

带电粒子在极板间的偏转可分解为匀速直线运动和匀加速直线运动,我们处理此类问题时要注意平行板间距离的变化时,若电压不变,则极板间场强发生变化,加速度发生变化,这时不能盲目地套用公式,而应具体问题具体分析。

但可以凭着悟性与感觉:当加速电场的电压增大,加速出来的粒子速度就会增大,当进入偏转电场后,就很快“飞”出电场而来不及偏转,加上如果偏转电场强越小,即进入偏转电场后的侧移显然就越小,反之则变大。

20、要对平行板电容器的电容、电压、电量、场强、电势等物理量进行准确的动态分析。

这里特别提出两种典型情况:

一是电容器一直与电源保持连接着,则说明改变两极板之间的距离,电容器上的电压始终不变,抓住这一特点,那么一切便迎刃而解了;

二是电容器充电后与电源断开,则说明电容器的电量始终不变,那么改变极板间的距离,首先不变的场强,(这可以用公式来推导,E=U/d=Q/Cd,又C=εs/4πkd,代入,即得出E与极板间的距离无关,还可以从电量不变角度来快速判断,因为极板上的电荷量不变则说明电荷的疏密程度不变即电场强度显然也不变。)

21、要对闭合电路中的电流强度、电压、电功率等物理随着某一电阻变化进行准确的动态分析

闭合电路中的电流强度、电压、电功率等物理量随着某一电阻变化进行准确的动态分析(有的题目还会介入变压器、电感、电容、二极管甚至逻辑电路等装置或元件)是高考必考的问题,必须引起足够重视进行必要的训练。

闭合电路的动态分析方法一定要严格按“局部→整体→局部”的程序进行。对局部,要判断电阻如何变化,从而判断总电阻如何变化。对整体,首先判断干路电流回路随总电阻增大而减小,然后由闭合电路欧姆定律得路端电压随总电阻增大而增大。

第二个局部是重点,也是难点。需要根据串、并联电路的特点和规律及欧姆定律交替判断。另外,还可用“极限思维方式”来分析。如某一电阻增大或减小,我们完全可以认为它增大到无穷大造成电路断路或减小为零造成短路,这样分析简洁、快速,但要在其它物理随这变化的电阻作单调性变化才行。

22、要正确理解伏安特性曲线

电压随电流变化的U-I图线与“伏安特性”曲线I-U图线,历来一直高考重点要考的内容(其中电学实验测电源的电动势、内阻,测小灯泡的功率,测金属丝的电阻率等等都是必考内容)。这里特别的是有两点:

(1)首先要认识图线的两个坐标轴所表示的意义、图线的斜率所表示的意义等,特别注意的是纵坐标的起始点有可能不是从零开始的。

(2)线路产的连接无非为四种:电流表内接分压、电流表外接分压、电流表内接限流、电流表外接限流。一般来说,采用分压接法用的比较多。至于电流表内外接法则取决于与之相连的电阻,显然电阻越大,内接误差越小,反之亦然。

(3)另外,对仪表的选择首先要注意量程,再考虑读数的精确。

23、要准确把握“游标卡尺与螺旋测微器”读数规律

电学实验中关于相关的游标卡尺与螺旋测微器计数问题,这是高考经常随着实验考查的。但大家总是读错,主要原因是没有掌握读数的最基本要领。

只要记住,中学要求,只有螺旋测微器需要估读,游标卡尺不需要估读。所以应有下列规律:在用螺旋测微器计数时,只要以毫米(mm)为单位的,小数点后面一定是三小数,遇到整数就加零。在用游标卡尺计数时,有十分度、二十分度和五十分度三种,只要以毫米(mm)为单位的,那么十分度的尺,小数点后面一定得保留一位数,如果是二十分度和五十分度的,则以毫米为单位的,小数点后面一定保留二位数。记住这样的规律,那么读起数来,就不会容易出错。

这里还有必要提示一下,关于伏特表、安培表、欧姆表等各种仪表的读数要留心一下。

24、在电磁场中所涉及到的带电粒子何时考虑重力何时不考虑重力

一般情况下:微观粒子如,电子(β粒子)、质子、α粒子及各种离子都不考虑自身的重力;如果题目中告知是带电小球、尘埃、油滴或液滴等带电颗粒都应考虑重力。如无特殊说明,题目中附有具体相关数据,可通过比较来确定是否考虑重力。

25、要特别注意题目中的临界状态的关键词

无论在力学还是在电学中,物理问题总会涉及到一些特殊状态,其中临界状态就是常见的特殊状态。

对于比较难的题目,这种状态往往就隐含的各种条件里面,需要认真审题挖掘,建议特别注意下列关键词语:“恰好“、”刚好”、“至少”等。找到了这临界状态的关键词也就找到了解题的“突破口”了。

26、电磁感应中的安培定则、左手定则、右手定则以及楞次定律、电磁感应定律一定牢固掌握熟练运用

安培定则——判别运动电荷或电流产生的磁场方向(因电而生磁);

左手定则——判别磁场对运动电荷或电流的作用力方向(因电而生动);

右手定则——判别切割磁力线感应电流的方向(因动而生电);

楞次定律——是解决闭合电路的磁通量变化产生感应电流方向判别的主要依据。

要真正准确、熟练地运用“楞次定律”一定要明白:“谁”阻碍“谁”;“阻碍”的是什么;如何“阻碍”;“阻碍”后结果如何。(注意:“阻碍”与“阻止”有本质的区别)

电磁感应定律——就是法拉弟解决“切割磁力线的导体或闭合回路产生感应电动势”定量方法。

对于闭合线圈:E=n△Φ/△t=nS△B/△t=nB△S/△t;(注意:求某一段时间内通过某一电阻上的电量,往往利用此公式求解)

27、解“力、电、磁”综合题最重要的两步骤和最主要的得分点

电磁感应与力电知识综合运用,应该是高考重点考又是考生得分最低的问题之一。失分主要原因就是审题不清、对象不明、思路混乱。

其实,解决这类问题有一个“万变不离其宗”的方法步骤:

第一步:就是首先必须从读题审题目中找出两个研究对象,一是电学对象。即电源(电磁感应产生的电动势)及其回路(包括各电阻的串、并联方式);二是力学对象:这个对象不是导体就是线圈,其运动状态一般是做有一定变化规律变速运动;

第二步:选择好研究对象后,一定要按下列程序进行分析:画导体受力(千万不能漏力)——→运动变化分析——→感应电动势变化——→感应电流变化——→合外力变化——→加速度变化——→速度变化——→感应电动势变化,这种变化总是相互联系相互影响的。其中有一重要临界状态就是加速度a=0时,速度一定达到某个极值。

采分点:这类题目必定会用到:牛顿第二定律、法拉弟电磁感应定律、闭合电路欧姆定律、动能定理、能量转化与守恒定律(功能原理),摩擦力做功就是使机械能转化为热能,电流做功就是使机械能转化为电能(电阻上的热能)。

28、交变电流中的线圈所处的两个位置的几个特殊的最值要记牢

闭合线圈在磁场中转动就会产生按正弦或余弦规律变化的交流电。在这一过程中,当线圈转动到两个特殊位置时,其相应的电流、电动势、磁通量大小、磁通量的变化率、电流方向都会有所不同:

第一特殊位置:线圈平面与磁场方向垂直的位置即中性面,则一定有如下情况,磁通量最大——→磁通量的变化率最小(0)——→感应电动势最小(为0)——→感应电流最小(为0)——→此位置电流方向将发生改变(线圈转动一周,两次经过中性面,电流方向改变两次)。

第二个特殊位置:线圈平面与磁场方向平行的位置,所得的结果与上述相反。

有一个规律显然看出来:磁通量的变化率、感应电动势与感应电流变化总是一致的。

29、要正确区别交变电流中的几个特殊的最值

在正、余弦交变电流中电流、电压(电动势)、功率经常涉及的几个值:瞬时值、最大值(峰值)、有效值、平均值:

瞬时值:就是交流电某一时刻的值,即i=Imsinωt;e=Emsinωt;

峰值(最值):Em=nBSω(注意电容器的击穿电压);Im=Em/(R+r);

有效值:特别注意有效值的定义,只能对于正弦或余弦交流而言,各物理量才有的关系。如果其它类型的交流电唯一方法就利用电流的热效应在相同时间内所对直流电发热相等来计算得出。

平均值:就是交变电流图像中的图线与时间所围成的面积与所对应的时间比值。特别用在计算通过电路中某一电阻的电量:q=△Φ/R。

30、要正确理解变压器工作原理

会推导变压器的电流、电压比,会画出电能输送的原理图变压器改变电压原理就是利用电磁感应定律设计的。通过该定律可以直接得到理想变压器的原、副线圈上的电压比U1/U2=n1/n2;利用输出功率等于输入功率的关系也很快得出原、副线圈上的电流比:I1/I2=n1/n2。这里只指只有一个副线圈情形,如果有两个以上的副线圈,那么必须还是按照电磁感应定律去推导。

这里特别说明的要注意“电压互感器”与“电流互感器”的原理与接法。

31、要正确理解振动图像与波形图像(横波)

应该从研究对象进行比较(一个质点与无数个质点);

应该从图像的意义进行比较(一个质点的某时刻的位置与无数质点在某一时刻位置);

应该从图像的特点进行比较(虽然都是正弦曲线,但坐标轴不同);

应该从图像提供的信息进行比较(相似的是质点的振幅,回复力,但不同的是周期、质点运动方向、波长等);

应试从图像随时间变化进行比较(一个是随时间推移图像延续而形状不变,一个是随时间推移,图像沿传播方向平移);

[注]:一个完整的曲线对于振动图来说是一个周期,而对于波形图来说却是一个波长。

判断波形图像中质点在某一时刻的振动方向,可以用“平移法”、“太阳照射法”、“上下坡法”、“三角形法”等。

32、要认清“机械波与电磁波(包括光波)”、“泊松亮斑”与“牛顿环”的区别

机械波与电磁波(包括光波),虽然都是波,都是能量传播的一种形式,都具有干涉、衍射(横波还有偏振)特性,但它们也还有本质上的区别,如:

(1)机械波由做机械振动的质点相互联系引起的,所以它传播必须依赖介质,而电磁波(包括光波)是由振荡的电场与振荡的磁场(注意,是非均匀变化的)引起的,所以它的传播不需要依靠质点,可以在真空中传播;

(2)机械波从空气进入水等其它介质时,速度将增大,而电磁波(包括光波)刚好相反,它在真空中传播速度最大,机械波不能在真空中传播;

(3)机械波有纵波与横纵,而电磁波就是横波,具有偏振性;

[注]:两列波发生干涉时,必要有一点条件(即频率相同),产生干涉后,振动加强的点永远加强,反之振动减弱的点永远减弱。

“泊松亮斑”与“牛顿环”的区别这两个重要光学现象,非常相似,都是圆开图像,但本质有区别。

泊松亮斑:当光照到不透光的小圆板上时,在圆板的阴影中心出现的亮斑(在阴影外还有不等间距的明暗相间的圆环)。这是光的衍射现象;

牛顿环:是用一个曲率半径很大的凸透镜的凸面和一平面玻璃接触,在日光下或用白光照射时,可以看到接触点为一暗点,其周围为一些明暗相间的彩色圆环;而用单色光照射时,则表现为一些明暗相间的单色圆圈。这些圆圈的距离不等,随离中心点的距离的增加而逐渐变窄。这是光的干涉现象。

33、关于“多普勒效应”、“电流的磁效应”、“霍尔效应”、“光电效应”、“康普顿效应”的比较

这几种重要物理效应,分散在课本中,我们可以集结到一起进行综合比较:

多普勒效应:这是声学中的一种现象,即声源向观察靠近时,观察者将听到声源发出的频率变高,反之背离观察者频率将变低。

电流的磁效应:就是通电导线或导电螺旋管周围产生磁场的现象。

霍尔效应:就是将载流导体放在一匀强磁场中,当磁场方向与电流方向垂直时,导体将在与磁场、电流的垂直方向上形成电势差(也叫霍尔电压),这个现象就称之为霍尔效应。

光电效应:就是将一束光(由一定频率的光子组成的)照射到某金属板上,金属板表面立即会有电子逸出的现象(这种电子称之为光电子)。这一效应不仅说明光具有粒子性还说明光子具有能量。

康普顿效应:就是当光在介质中与物质微粒相互作用而向不同方向传播,这种散射现象中,人们发现光的波长发生了变化。这一现象叫康普顿效应,它不仅说明光具有粒子性有能量外还说明光具有动量。

34、掌握人类对“原子、原子核”认识的发展史

谈到原子与原子核首先要记住两个重要人物:一个因为阴极射线而发现电子说明原子内有复杂结构的英国物理学家汤姆孙;一个是因为发现天然放射现象而说明原子核内有复杂结构的法国科学家贝克勒尔。

我要回帖

更多关于 长t1长t2信号是癌症吗 的文章

 

随机推荐