微纳金属探针3D打印技术应用:AFM探针

全文阅读已结束如果下载本文需要使用

该用户还上传了这些文档

纳米科学:通过3-D直接激光写入创建定制的AFM探针!

原子力显微镜(AFM)是一种允许研究人员在原子尺度上分析表面的技术它基于一个非常简单的概念:悬臂上的尖锐尖端“感知”样品的地形,虽然这项技术已经成功使用了30多年并且您可以轻松购买标准微机械探针进行实验,但标准尺寸的探针并不总是您所需要的研究人员经常需要具有独特设计的尖端 - 特定的尖端顶尖形状或可以到达深沟的底部的极长尖端。通过微机械加工准备非标准刀头昰可能的但它通常很昂贵,但是现在一组卡尔斯鲁厄理工学院(KIT)的研究人员报告说,他们已经开发出一种方法通过基于双光子聚匼的三维直接激光写入来定制特定应用的技巧,本周将出现在封面上应用物理快报。

双光子聚合是一种3D打印过程可提供极高分辨率的結构。它涉及使用紧密聚焦的红外飞秒激光来曝光紫外光固化的光致抗蚀剂材料这会引起双光子吸附,进而引发聚合反应通过这种方式,可以在其目的的位置精确地编写自由设计的零件 - 甚至是纳米尺度的物体例如悬臂上的AFM尖端,这个概念在宏观尺度上并不新鲜:您可鉯使用计算机自由设计任何形状并以3-D打印”KIT扫描探针技术组负责人HendrikHlscher解释道。“但在纳米尺度上这种方法很复杂。为了编写我们的技巧我们采用了最近在KIT开发的实验装置进行双光子聚合,现在可以从创业公司Nanoscribe GmbH获得

根据该小组的说法,半径小至25纳米的尖端 - 比人类头发直徑小约3,000倍 - 并且可以将任意形状附着到传统形状的微机械悬臂上长期扫描测量显示低磨损率,证明了这些尖端的可靠性“我们还能够通過在悬臂上增加加固结构来证明探头的共振频谱可以针对多屏应用进行调整,”Hlscher说该小组工作的关键意义在于,设计最佳吸头或探针的能力为分析样品的无限选择打开了大门 - 大大提高了分辨率通过3D打印书写零件有望成为宏观规模的大企业,”他说“但我对纳米尺度的效果感到惊讶。当我们小组开始这个项目时我们试图不断扩大技术的极限......但博士生Philipp-Immanuel Dietrich和GeraldGring不断回来从实验室获得新的成功结果。

对于近期的未来应用双光子聚合将广泛应用于纳米技术研究人员。“我们希望在扫描探测方法领域工作的其他团队能够尽快利用我们的方法”Hlscher指絀。“它甚至可能成为一个允许您通过网络设计和订购AFM探针的互联网业务Hlscher说,该小组将“继续优化”他们的方法并将其应用于从仿生學到光学和光子学的研究项目。

核心提示:来自爱尔兰I-Form高级制造研究中心的三位研究人员发表了一篇论文“用于3D打印过程中316L粉末可回收性分析的X射线断层扫描,AFM和纳米压痕测量”重点在于更好地理解和表征金属探针粉末的回收,并评估“粉末颗粒的孔隙率”以优化粉末床熔化过程中回收粉末的实际可重复使用次数。

为了减少材料浪费节约资金,实验室经常会对剩余的金属探针粉末进行再利用来自爱尔兰I-Form高级制造研究中心的三位研究人员发表了一篇论文,“用於3D打印过程中316L粉末可回收性分析的X射线断层扫描AFM和纳米压痕测量”,重点在于更好地理解和表征金属探针粉末的回收并评估“粉末颗粒的孔隙率”,以优化粉末床熔化过程中回收粉末的实际可重复使用次数

    许多“抗风险应用”,例如在航空和生物医学行业中将不会使用回收粉末,因为任何可追溯到材料的部件异常可能都是不安全且昂贵的用再生粉末打印的部件3D需要具有与新粉末部件相当的机械性能,例如硬度和有效模量

    为了在二次制造周期中重复使用回收的粉末,全面的表征对于监控3D打印机中受激光热影响的粉末的表面质量和微观结构变化至关重要在增材制造工艺及其环境中,大多数粉末都有表面氧化、聚集和形成孔隙的风险[1,2]我们的最新分析证实了回收粉末中的氧化和多孔颗粒的增加,这是316L不锈钢粉末的主要危险变化[3,4]

    再利用回收粉末之前的一个常见做法是筛分,但这不会降低颗粒的孔隙率或表面氧化此外,“随后使用再生粉末”可以改变最终部件的机械强度而不是更好。

    在这里研究人员报告了我们最新的努力,即使用X射线计算技术来测量回收粉末中形成的孔隙分布并将这些分析与通过AFM粗糙度测量和纳米压痕获得的粉末的机械性能(硬度和有效模量)相关联技术。

    使用316L不锈钢粉末并在EOSINTM280SLM3D打印机上打印了9个5x5x5毫米的测试立方体。他们在真空条件下从粉末床中取出了回收的粉末然后在使用前过筛。打印完成后他们再次收集了样品粉末并将其标记为再生粉末。

    通过XCT和纳米压痕等多种技术对原始粉末和回收粉末进行了分析XCT是通过X射线计算机断层扫描(XCT)进行的,测量是用Xradia500VersaX射线显微镜进行的XCT的加速电压为80kv,7w3D扫描阈值为2微米。

    为了测量原始粉末和回收粉末的粗糙度我们使用布鲁克尺寸ICONAFM进行了原子力显微镜(AFM)和共聚焦显微镜。平均粗糙度是使用Gwyddion软件去除噪声并在图像上应用中值滤波器作为非线性数字滤波技术计算得出的

    研究人员还在250?N的力下,对多个粉末颗粒进行了纳米压痕时间不超过十秒钟,以确定“孔隙率對回收粉末的硬度和有效模量的影响”并使用光学显微镜对确定粉末上的孔区域。

    粉末的XCT成像(a)900张记录的CT图像的3D渲染图像;(b)感興趣的区域;(c)2D切片显示的颗粒中的内部孔;(d)在图像处理后识别出粒子内部的孔。

    对XCT图像进行了分析并选择了“感兴趣区域”,洳上所示从中提取了孔径和内部颗粒分布。

    原子力显微镜在颗粒上的图像显示了模具和钢的边界以及测量表面粗糙度的区域

    使用软件處理原始粉末和回收粉末的AFM形貌图像,该团队以250微米的力在颗粒的不同位置上应用了纳米压痕

    (a)将粉末颗粒放在硬化模具上以进行纳米压痕,以及(b)在颗粒表面施加压痕

他们确定了再利用的粉末颗粒的孔隙率比原始粉末高约10%,原始粉末的粉末颗粒表面平均粗糙度為4.29纳米而回收的粉末表面为5.49纳米。这意味着3D打印“可能会增加回收颗粒的表面粗糙度”纳米压痕测量表明,再生粉末的平均硬度为207GPa岼均有效模量为9.60GPa,相比之下原始粉末的平均硬度为236GPa和9.87GPa,“这可以与表面下方产生的孔隙率相关”

    在XCT测量中从图像处理中提取的原始粉末和回收粉末的孔径分布。

    与原始粉末相比再生粉末的孔径分布更广。原始粉末中的主要孔尺寸约为1-5微米略微减小至较大尺寸,但较尛的尺寸回收粉中的孔也较大,但人口较少另一方面,从原始粉末(约10微米大小)中观察到更高的孔密度我们认为金属探针元素在噭光照射过程中会扩散到表面。

    AFM测量得出的粉末颗粒表面粗糙度图通过Gwyiddion软件计算平均粗糙度。

    再生粉末的硬度小于原始粉末“可归因於再生颗粒中较高的孔密度”,因为孔隙率使粉末“更容易受到外力而导致硬度降低”

    虽然改变粉末颗粒的粒度会导致机械性能下降,泹该团队的AFM和SEM结果并未显示出回收粉末中有大量颗粒重新分布但是,他们的纳米压痕和XCT结果确实发现较高的粉末孔隙率会降低颗粒的硬度和模量,这“将损害所制造部件的机械性能”

    纳米压痕法测定新鲜颗粒和原始颗粒的硬度和有效模量。

“我们之前已经介绍了使用SEM囷XPS分析在表面和尺寸分析上取得的成就在这里,我们专注于两种粉末中的孔分布并将其与从粉末颗粒的纳米压痕分析获得的表面粗糙喥,硬度和有效模量相关联”研究人员总结道。“结果表明受激光热量和粉末中氧的夹杂/捕集的影响,再生粉末中的孔数量增加了约10%这反过来增加了表面粗糙度,但降低了再生粉末的硬度和模量孔中充满了气体(例如氩气或氧气),因为这些气体无法跳过熔体並且在整个固化过程中在熔体中的溶解度较低。”

我要回帖

更多关于 金属探针 的文章

 

随机推荐