微纳金属3D打印技术应用:AFM探针有什么用

原标题:《AFM》:3D打印制造高强韧雙网络颗粒水凝胶

尽管仿生材料发展蓬勃但依然很难媲美天然软组织所具有的特性。例如天然软组织能够通过结构和局部组分变化的楿互作用展现出的独特力学性能。而相比之下目前的合成软材料还未在这一水平实现可控性,严重限制了合成软材料的进一步发展应用

针对这一问题,瑞士洛桑联邦理工学院的Esther Amstad团队开发了可以制造强韧双网络颗粒水凝胶(DNGHs)的3D打印策略研究人员在单体溶液中加入聚电解质基微凝胶(可在单体溶液中进行溶胀)形成墨水材料;当墨水经过增材制造后,这些单体可紫外固化转变形成逾渗网络并与微凝胶網络一同形成DNGHs。由于改善了微凝胶网络中的颗粒间接触表现和双网络结构的存在 DNGHs的硬度显著提高,可重复支持高达1.3MPa的拉伸载荷;其韧性吔比单原料聚合物网络高出一个数量级研究认为,这一新型DNGHs的出现为设计可用于软机器制造等先进领域的高强韧水凝胶提供了新思路楿关工作以“3D Printing of Strong and Tough Double Network Granular

微凝胶墨水的设计和制备

在文章研究的DNGHs体系中,引入了聚电解质基微凝胶以赋予合成水凝胶“组分局部变化”这一天然软组織材料特性然而,微凝胶接触面小常常导致形成的超结构强度低。因此为了提升水凝胶的力学性能研究合成了具有高溶胀能力的丙磺酸类(AMPS)微凝胶。形成微凝胶后研究人员将其置于丙烯酰胺(AM)单体水溶液中;在该溶液中,微凝胶能够溶胀加大接触面以保证良恏的颗粒间粘附。在3D打印后AM单体经过紫外固化可转变形成逾渗的PAM网络,与优化过的微凝胶一同形成力学性能优异的DNGHs

DNGHs的力学性能表征

研究首先比较发现,DNGHs的硬度和韧性要优于AMPS基水凝胶和AM基水凝胶检测显示,DNGHs的杨氏模量分别比AMPS基水凝胶和AM基水凝胶高5倍和3倍研究认为,这┅性能提升主要归因于AM聚合物(PAM)链和微凝胶网络能够限制链纠缠现象从而约束了取代行为。此外DNGHs的断裂强度也比AMPS基水凝胶和AM基水凝膠高十倍以上,表明DNGHs具有优异的韧性

研究还探索了DNGHs的潜在应用。通过改变微凝胶中所含组分类别研究人员合成了多种微凝胶;将这些微凝胶混合并置于同一单体溶液中可形成多样化墨水。这样一来墨水就具有多种含不同组分的微凝胶,;在经过3D打印后即可形成含有多種组分和特性的复杂结构为了验证可行性,研究人员利用具有多种交联密度(即溶胀能力不同)微凝胶的多样化墨水体系成功打印了雙层形貌渐变花朵结构。由于花朵的双层结构是由两种交联密度不同的微凝胶层组成的因此在经过干燥或者水浸没处理后,花朵可实现偅复折叠现象

该工作介绍了一种高强韧复合水凝胶的增材制造策略。该策略将微凝胶的流变性能和双网络水凝胶的力学性能结合在一起成功地3D打印出了高强韧水凝胶材料。因此这一工作扩展了可3D打印的高强度复杂材料体系。不仅如此该工作开发的墨水具有设计灵活囷打印结构可控的特点,为设计制造可响应外部刺激而进行局部调整的新型软机器和植入体提供了新的可能性

生物3D打印技术在复杂结构和多细胞组织器官构筑方面具有不可替代的优势打印墨水日益成为制约3D打印组织工程领域发展的瓶颈,其可打印性和物化性能对细胞行为和命运的调控是构筑组织器官,实现再生的关键水凝胶是含大量水的三维交联网络材料,具有类细胞外基质的特征可用于生物3D打印。然洏水凝胶材料存在凝胶-溶胶转变慢、支撑强度弱等问题,打印精度和结构稳定性有待改善光交联、增稠剂或支持浴等策略可部分地解決这些难题,但增加了打印工艺的复杂程度增大了生物毒性等风险。解决水凝胶材料可打印性与结构稳定性之间的矛盾实现温和条件丅的快速打印,构筑高精度仿生组织工程支架是生物3D打印领域亟待解决的关键科学问题。

近期中山大学材料与工程学院付俊教授团队發明了新型微凝胶生物墨水,该墨水可通过氢键组装为宏观水凝胶(bulk hydrogel)具有典型的触变性能、快速自愈合性能和一定的机械强度,可在常温條件下直接打印构筑复杂组织工程支架相关论文“Direct 3D Printed Biomimetic Scaffolds Based onHydrogel

如图1,生物墨水主要成分为甲基丙烯酸酯化壳聚糖(CHMA)和聚乙烯醇(PVA)制备过程分成两步:1)用0.1%w/v的光引发剂Irgacure 1173制备CHMA溶液和PVA溶液;在90°C磁力搅拌下,以1:1的重量比将PVA和CHMA溶液混合10分钟制备CHMA/PVA溶液,离心除泡在室温下紫外光(10mWcm-2,365 nm)交聯2分钟;利用反复冻融增强化学交联凝胶化学交联的CHMA与PVA形成氢键。2)将CHMA/PVA水凝胶重复挤出喷嘴研磨成200微米左右的微凝胶离心去除气泡以後形成微凝胶生物墨水。

图1 基于甲基丙烯酰化壳聚糖(CHMA)/聚乙烯醇(PVA)的微凝胶墨水制备及打印示意图

该墨水能直接3D打印的关键在于微凝胶之间存茬广泛的氢键作用在微凝胶中,PVA-PVAPVA-CHMA中的羟基与羟基,羟基与氨基等官能团间具有强的成氢键能力使得微凝胶组装成宏观凝胶。在剪切莋用下微凝胶墨水发生屈服和凝胶-溶胶转变(图2b),应力撤消后又可快速自愈合恢复(图2c)。可逆的氢键作用赋予CHMA/PVA微凝胶墨水具有可控的剪切变稀(图3a)、屈服强度(图3b)和抗蠕变性能(图3c)该墨水的流变行为符合Herschel-Bulkley流体特征(图3d)。因此无需添加增粘剂、支撑骨架囷后交联处理,利用该墨水即可一步实现类血管、人耳、股骨等多种大长径比的仿生结构自支撑挤出打印(图4)

图2 微凝胶墨水的(a)粒径与形态,(b)剪切屈服(c) 快速凝胶-溶胶转变与自愈合
图3 流变表征微凝胶墨水的屈服流动行为:(a)剪切速率扫描粘度变化,(b)剪切应力扫描的屈服应力 (c)蠕变与恢复,(d) Herschel-Bulkley流动分析
图4 pcHμP生物墨水打印的复杂仿生结构

此外体外细胞实验结果表明该墨水体系具有优异的生物相容性并有利于细胞荿球(图5)。这是由于壳聚糖的氨基数量影响细胞接触性能另外,PVA用作抗粘基质亲水链可能在接种后不久促进细胞簇的形成。壳聚糖/ PVA複合膜由于壳聚糖的钙结合能力而可能影响钙离子信号从而调节MSC融合成球状体并有助于维持干性标记基因(Oct4,Sox2和Nanog)的表达这为该支架體系在皮肤、软骨等组织工程领域的进一步应用奠定了基础。

在光线下形成聚合物或长链分子嘚树脂或其他材料对于从建筑模型到功能性人体器官部件的3D打印而言是十分有吸引力的。但是在单个体素的固化过程中,材料的机械囷流动特性会发生怎样变化这一点很神秘。体素是体积的3D单位相当于照片中的像素。

现在美国国家标准与技术研究院(NIST)的研究人員已经展示了一种新型的基于光的原子力显微(AFM)技术——样品耦合共振光学流变学(SCRPR),它可以在材料固化过程中以最小的最小尺度测量材料性质在实际中的变化方式和位置

三维印刷或增材制造受到称赞,可以十分灵活、高效地生产复杂零件但其也有缺点,就是会在材料特性方面引入微观变化由于软件将零件渲染为薄层,在打印前三维重建它们因此材料的整体属性不再与打印零件的属性相匹配。楿反制造零件的性能取决于打印条件。

NIST的新方法可以测量材料如何随亚微米空间分辨率和亚毫秒时间分辨率发展的——比批量测量技术尛数千倍且更快研究人员可以使用SCRPR来测量整个固化过程中的变化,收集关键数据以优化从生物凝胶到硬质树脂的材料加工。

这种新方法将AFM与立体光刻技术相结合利用光线对光反应材料进行图案化,从水凝胶到增强丙烯酸树脂由于光强度的变化或反应性分子的扩散,茚刷的体素可能变得不均匀

AFM可以感知表面的快速微小变化。在NIST SCRPR方法中AFM探针持续与样品接触。研究人员采用商业AFM使用紫外激光在AFM探针與样品接触的位置或附近开始形成聚合物(“聚合”)。

该方法在有限时间跨度内在空间中的某一个位置处测量两个值。具体而言它測量AFM探针的共振频率(最大振动的频率)和品质因数(能量耗散的指标),跟踪整个聚合过程中这些值的变化然后可以使用数学模型分析这些数据,以确定材料属性例如刚度和阻尼。

用两种材料证明了该方法一种是由橡胶光转化为玻璃的聚合物薄膜。研究人员发现凅化过程和性能取决于曝光功率和时间,并且在空间上很复杂这证实了快速,高分辨率测量的必要性第二种材料是商业3-D印刷树脂,在12毫秒内从液体变成固体共振频率的升高似乎表明固化树脂的聚合和弹性增加。因此研究人员使用AFM制作了单个聚合体素的地形图像。

让研究人员感到惊讶的是对NIST技术的兴趣远远超出了最初的3D打印应用。NIST的研究人员表示涂料,光学和增材制造领域的公司已经开始感兴趣有些正在寻求正式的合作。

我要回帖

更多关于 探针有什么用 的文章

 

随机推荐