大学微积分题目 水平弯曲线 微积分在平面上的投影

《大学数学基础教程课后答案(微积分)》
大学数学基础教程课后答案(微积分)日期:
大学数学基础教程(微积分1-4章)习题答案习题1—1解答1.设f(x,y)=xy+x11x1,求f(-x,-y),f(,f(xy,yxyyf(x,y)解f(-x,-y)=xy+x111yx1y;f(,)=+;f(xy,=x2+y2;=2yxyxyxyf(x,y)xy+x2.设f(x,y)=lnxlny,证明:f(xy,uv)=f(x,u)+f(x,v)+f(y,u)+f(y,v)f(xy,uv)=ln(xy)?ln(uv)=(lnx+lny)(lnu+lnv)=lnx?lnu+lnx?lnv+lny?lnu+lny?lnv=f(x,u)+f(x,v)+f(y,u)+f(y,v)3.求下列函数的定义域,并画出定义域的图形:(1)f(x,y)=-x2+y2-1;4x-y2(2)f(x,y)=;22ln(1-x-y)x2y2z2(3)f(x,y)=-2-2-2;abc(4)f(x,y,z)=+y+z-x-y-z222.解(1)D={(x,y)x≤1,y≥(2)D=(x,y)0??x2y22(3)D=?(x,y)2+2+ab?(4)D=(x,y,z)x≥0,y≥0,z≥0,x2+y2+z2{}x4.求下列各极限:(1)lim1-xy1-0==122x+y0+1ln(x+ey)ln(1+e0)==ln222+0x+yx→0y→1(2)limx→1y→02-xy+4(2-xy+4)(2+xy+4)1(3)lim=lim=-x→0x→0xy4xy(2+xy+4)y→0y→0(4)limsin(xy)sin(xy)=lim?x=2x→2x→2yxyy→0y→05.证明下列极限不存在:x+y(1)x→0x-yy→0x2y2(2)lim22x→0xy+(x-y)2y→0(1)证明如果动点P(x,y)沿y=2x趋向(0,0)则limx+yx+2x=lim=-3;x→0x→0x-yx-2xy=2x→0x+y3y=lim=3y→0y→0yx-yx=2y→0如果动点P(x,y)沿x=2y趋向(0,0),则lim所以极限不存在。(2)证明:如果动点P(x,y)沿y=x趋向(0,0)x2y2x4则lim22=lim4=1;2x→0x→0xxy+(x-y)y=x→0x2y24x4如果动点P(x,y)沿y=2x趋向(0,0),则lim=lim=022242x→0x→0xy+(x-y)4x+xy=2x→0所以极限不存在。6.指出下列函数的间断点:y2+2x(1)f(x,y)=;y-2x解断。(2)z=lnx-y。(1)为使函数表达式有意义,需y-2x≠0,所以在y-2x=0处,函数间(2)为使函数表达式有意义,需x≠y,所以在x=y处,函数间断。习题1—21.(1)z=xy+yx?z1y?z1x=-2;=-2.?xyx?yxy(2)?z=ycos(xy)-2ycos(xy)sin(xy)=y[cos(xy)-sin(2xy)]?x?z=xcos(xy)-2xcos(xy)sin(xy)=x[cos(xy)-sin(2xy)]?y(3)?z=y(1+xy)y-1y=y2(1+xy)y-1,?xlnz=yln(1+xy),两边同时对y求偏导得1?zx=ln(1+xy)+y,z?y1+xyxyxy?z=z[ln(1+xy)+=(1+xy)y[ln(1+xy)+;?y1+xy1+xy2y3?zx3-2yx(4)==,3y?xx+2x(x+y)x1-?z=?y1x21;3x+yx+yx2=yyyy?uyz1?u1z?u=x,=xlnx,=-2xzlnx(5)??yz?zz?uz(x-y)z-1(6),=2z?x1+(x-y)?uz(x-y)z-1=-,2z?y1+(x-y)?u(x-y)zln(x-y)=;?z1+(x-y)2z2.(1)zx=y,zy=x,zxx=0,zxy=1,zyy=0;(2)zx=asin2(ax+by),zy=bsin2(ax+by),zxx=2a2cos2(ax+by),zxy=2abcos2(ax+by),zyy=2b2cos2(ax+by).3fx=y2+2xz,fy=2xy+z2,fz=2yz+x2,fxx=2z,fxz=2x,fyz=2z,fxx(0,0,1)=2,fxz(1,0,2)=2,fyz(0,-1,0)=0.4ttttzx=-2sin2(x-),zt=sin2(x-),zxt=2cos2(x-),ztt=-cos2(x-2222tt2ztt+zxt=-2cos2(x-+2cos2(x-)=0.22yyyyy1y1x5.(1)zx=-2ex,zy=ex,dz=-2exdx+xxxx(2)z=1xyxy22,,,ln(x+y)zx=2zy=2dz=2dx+222222x+yx+yx+yx+y-y12yx-ydx+xdyxx(3)zx=,,dz=;=-2z==y22222yyx+yx+y1+(21+(2x+yxx(4)ux=yzxyz-1,uy=zxyzlnx,uz=yxyzlnx,du=yzxyz-1dx+zxyzlnxdy+yxyzlnxdz.6.设对角线为z,则z=x2+y2,zx=xx2+y2,zy=yx2+y2,dz=xdx+ydyx2+y2当x=6,y=8,?x=0.05,?y=-0.时,?z≈dz=6×0.05+8×(-0.1)+822=-0.05(m).7.设两腰分别为x、y,斜边为z,则z=x2+y2,zx=xx+y22,zy=yx+y22,dz=xdx+ydyx+y22,设x、y、z的绝对误差分别为δx、δy、δz,当x=7,y=24,?x≤δx=0.1,?y≤δy=0.1时,z=2+242=25?z≤dz≤7×0.1+24×0.17+2422=0.124,z的绝对误差δz=0.124z的相对误差?z0.124≈=0.496%.z258.设内半径为r,内高为h,容积为V,则V=πr2h,Vr=2πrh,Vh=πr2,dV=2πrhdr+πr2dh,当r=4,h=20,?r=0.1,?h=0.1时,?V≈dV=2×3.14×4×20×0.1+3.14×42×0.1=55.264(cm3).习题1—3yxyx-2du?fdx?fdy?fdzzz1.=++=?2a(ax+1)+?aeax+xyxyxydx?xdx?ydx?zdx1+(21+()21+(2zzzy[z+axz-2axy(ax+1)](ax+1)eax(1+a2x2)==.222422axz+xy(ax+1)+xe?z?f?ξ?f?ηη2.=+=?x?ξ?x?η?x-ξ24x3arcsin-x2-y2-4x3+arcsinξ?4=422x+y-x-y-xxln(x4+y4)(1-x2-y2)(x2+y2)x4+y4η?z?f?ξ?f?η=+=?y?ξ?y?η?y-ξ24y3arcsin-x2-y2-4y3+arcsinξ?4=422x+y-x-y-yyln(x4+y4)(1-x-y)(x+y)2222x+y3.(1)44.?u?u=2xf1+yexyf2,=-2yf1+xexyf2.?x?y(2)x1?u1?u?uy=?f1,=-2?f1+f2,=-2?f2.?xy?yyz?zz?u?u?u=f1+yf2+yzf3,=xf2+xzf3,=xyf3.?x?y?z?u?u?u=2xf1+yf2+f3=2yf1+xf2+f3,=f3.?x?y?z?z?z,=yf1=xf1+f2,?x?y(3)(4)4.(1)?2z?f12=y=y(f?y)=yf11,11?x2?x?2z?=(yf1)=f1+y?f1=f1+y(f11?x+f12)=f1+xyf11+yf12,?x?y?y?y?2z??f1?f22=(xf+f)=x+=x(f?x+f)+f?x+f=xf11+2xf12+f2?y?y?y?y(2)?z?z=y2f1+2xyf2,=2xyf1+x2f2,?x?y?2z?2?f22?f1=yf+2xyf=y+2yf+2xy122?x2?x?x?x()=y2(f11?y2+f12?2xy)+2yf2+2xy(f21?y2+f22?2xy)=2yf2+yf11+4xyf12+4xyf22?2z?2?f?f=yf1+2xyf2=2yf1+y21+2xf2+2xy2?x?y?y?y?y4322.()=2yf1+y2(f11?2xy+f12?x2)+2xf2+2xy(f21?2xy+f22?x2)=2yf1+2xf2+2xy3f11+2x3yf22+5x2y2f12?2z??f122?f2=2xyf+xf=2xf+2xy+x121?y2?y?y?y()=2xf1+2xy(f11?2xy+f12?x2)+x2(f21?2xy+f22?x2)=2xf1+4x2y2f11+4x3yf12+x4f225∵?u?u?x?u?y1?u3?u?u?u?x?u?y3?u1?u=+=+,=+=-+,?s?x?s?y?s2?x2?y?t?x?t?y?t2?x2?y(?u21?u23?u?u3?u2?u23?u2?u?u1?u2)=()++(),()=(-+(),?s4?x2?x?y4?y?t4?x2?x?y4?y?u2?u2?u?u)+(=(2+()2.?s?t?x?y∴(6(1)设F(x,y,z)=x+y+z-e-(x+y+z),Fx=1+e-(x+y+z),Fy=1+e-(x+y+z),Fz=1+e-(x+y+z),FyFx?z?z,=-=-1=-=-1?xFz?yFz(2)设F(x,y,z)=z-x2-y2tanzx-y2222,2-122(-)(x-y)22xz222x-yFx=-xx-yxx-yyx-yyx-y2222222tanzx-yz22-x-ysecz3=-2tanx-yzx-yz2222+xz2secx2-y2222zx-yz22,Fy=tan-x-ysec3-122(-x-y)2(-2yz)2x2-y2=tanx-y22-yz2secx2-y2z12zx-y22,Fz=1-x2-y2sec2x-y2x-y22=-tan2zx-yzx-y2222,F?zxzxz=-x=-cot+2csc22Fz?xx2-y2x2-y2x-y,Fy?z=-=?yFzyx-y22cotzx-y22-yz2cscx2-y2yzxzx-y22.(3)设F(x,y,z)=x+2y+z-xyz,Fx=1-Fy=2-xzxy,Fx=1-yzFyyz-xyz?z,==-Fzxyz-xy?yxz-2xyzxyz-xy.?zF=-x=Fz?x(4)设F(x,y,z)=xzx11x1-ln=-lnz+lny,Fx=,Fy=Fz=-2-,zyzzyzzFy?zFxz?zz2,,=-==-=?xFzx+z?yFzy(x+z)7.设F(x,y,z)=x+2y-3z-2sin(x+2y-3z),Fx=1-2cos(x+2y-3z),∵Fy=2-4cos(x+2y-3z),Fz=-3+6cos(x+2y-3z),∴Fy2F?z1?z=-x=,=-=,?xFz3?yFz3?z?z+=1.?x?y∴设F(x,y,z)=φ(cx-az,cy-bz),Fx=cφ1,Fy=cφ2,Fz=-aφ1-bφ2,FyFxcφ1?zcφ2=-==-=,?xFzaφ1+bφ2?yFzaφ1+bφ2?z∴a?z?z+b=c.?x?y(1)方程两边同时对x求导得x(6z+1)dy?dy?dz=-,=2x+2y,??dx?dx2y(3z+1)dx解之得??dydz?dy=x?2x+4y+6z=0,?dxdx??dx3z+1(2)方程两边同时对z求导得?dxdy?dz+dz+1=0,解之得?dxdy?2x+2y+2z=0dz?dz(3)方程两边同时对x求偏导得?dx=??dz?dy?=??dzy-z,x-yz-x.x-ysinv??u?u?v?u?u=,?u?1=e?x+?xsinv+ucosv?x,??xe(sinv-cosv)+1解之得??u?u?v?vcosv-eu?u?0=e?=-cosv+usinv,.u??x?x?x???xu[e(sinv-cosv)+1]同理方程两边同时对y求偏导得-cosv??u?u?v?u?u=,0=e+sinv+ucosv,?u??xe(sinv-cosv)+1??y?y?y解之得???u?u?v?vsinv+eu?u?1=e?=-cosv+usinv,.u??y?y?y????xu[e(sinv-cosv)+1]习题1-41.求下列函数的方向导数?u?lPo(1)u=x2+2y+3z2,P0(1,1,0),l=(1,-1,2)解:?u?x?u?y?u?zP0=2x=4yP0=2=4P0P0P0=6zP0=0l0=(?u?l112,-,666=2*112+4*(-=-.666∴P0y(2)u=()z,P0(1,1,1),l=(2,1,-1);x解:?u?xyz-1y=z()(-2)P0xxP0=-1,?u?y?u?zP0y1=z()z-1()xxP0=1,yzy=()ln(P0xxP0=0,l0=(?u?l211,,-666=(-1)*211+1*=-.66∴P0(3)u=ln(x2+y2),P0(1,1),l与ox轴夹角为解:?u?x?u?yP0=π;32xx2+y22yx2+y2P0=1,P0=P0=1,由题意知α=ππ,则β=,36l0=(cos?u?lππ13,cos)=(,*=.222∴P0=1*(4)u=xyz,P0(5,1,2),P1(9,4,14),l=P0P1.?u?x?u?y?u?zP0=yzP0=2,P0=xzP0=10,=xy=5,P0P0l=(4,3,12),∴l0=(∴?u?lP04312,,),131313*+10*+5*=.2.求下列函数的梯度gradf(1)f(x,y)=sin(x2y)+(cos(xy2);解:?f=cos(x2y)*(2xy)-sin(xy2)*y2,?x?f=cos(x2y)*x2-sin(xy2)*(2xy),?y∴gradf=(2xycos(x2y)-y2sin(xy2),x2cos(x2y)-2xysin(xy2))y(2)f(x,y)=ey.x?fyy11y解:=(-2)ey+ey=ey(1-?xxxyxx?f1yyyx11=e+e(-2=ey(-?yxxxyy1y11∴gradf=(ey(1-,ey(-)。xxxy333.一个登山者在山坡上点(-,-1,)处,山坡的高度z由公式z=5-x2-2y224近似,其中x和y是水平直角坐标,他决定按最陡的道路上登,问应当沿什么方向上登。解:?z?x?z?y=-2x=3,xxxxxxxxx33(=-1,)2433(-1,2433(=-1,)24=-4y33(=-1,)24=4,∴按最陡的道路上登,应当沿(3,4)方向上登。4.解:?T?T=y(1-y)(1-2x),=x(1-x)(1-2y)?x?y11(43沿方向-gradT11=(-,-)9165.解:设路径为y=f(x),在点(x,y)处gradT=(-2x,-8y)y=f(x)在(x,y)点的切向量为τ=(1,∵gradT平行于切向量τ,∴因为过(1,2),∴y=-2x4dy)dxdxdy==>y=cx4-2x-8y习题1-5tt+1,y=,z=t2在对应于t=1点处的切线及法平面方程。1+tt1解:当t=1时,x(1)=,y(1)=2,z(1)=1,21、求曲线x=1,2,1)2={x'(1),y'(1),z'(1)}={1?(1+t)-1?tt-(t+1)1,,2t={,-1,2}22(1+t)t4t=1故所求切线方程为:x-y-2z-1x-2y-2z-1,即:====4-121-48即:2x-8y+16z=111法平面方程为:(x--(y-2)+2(z-1)=0422、求下列空间曲线在指定点处的切线和法平面方程22??x+y=2(1)?22??y+z=2在点(1,1,1)解:将方程两端对x求导,得xdy?dy?=-2x+2y=0????dxydx=>??dydz?2y+2z=0?dz=x???dxdx?dxz故所求的切线方程为:x-1=法平面方程:x-y+z=1?x2+y2+z2=6(2)??x+y+z=0在M(1,1,1)处T=(1,-1,1)y-1=z-1-1在点(1,-2,1)解法1:将方程两端对x求导,得dydzdz??dy2x+2y?+2z?=0y?+z?=-x????dxdxdx=>?dx??1+dy+dz=0?dy+dz=-1???dxdx?dxdx当J=yz=y-x≠0时,有11dy1-xzz-xdz1y-xx-y=?=,=?=dxJ-11y-zdxJ1-1y-z?z-xx-y??dydz?=?1,,?=?1,,={1,0,-1}??dxdx?(1,-2,1)?y-zy-z?(1,-2,1)1,-2,1)?x-1z-1=?故所求的切线方程为:?-11??y+2=0法平面方程:-(x-1)+0?(y+2)+(z-1)=0即:x-z=0?2xdx+2ydy+2zdz=0解法2:将方程组两端求微分:得??dx+dy+dz=0∴曲线在点(1,-2,1)处的切向量为3.(题略)y11-z,Fx'(P0)=-,Fy'(P0)=,Fz'(P0)=-1,x2211π曲面在点P0的切平面方程为:-(x-1)+(y-1)+(-1)(z-)=0,即:x-y-224π2z-=0;2ππz-z-x-1y-1,即:x-1=y-1=法线方程为:==;11-11-12-22x2)令F(x,y,z)=z-y-lnz11则Fx=-,Fy=-1,Fz=1+xz解:(1)令F(x,y,z)=arctg曲面在点(1,1,1)点处的切平面的法向量为:n={-1,-1,+2}故所求的切平面方程为:(-1)?(x-1)+(-1)?(y-1)+2(z-1)=0即:x+y-2z=0法线方程为:x-1y-1z-1==-1-12(3)令F(x,y,z)=2xz+2yz-8,Fx'(P0)=4ln2,Fy'(P0)=-4ln2,Fz'(P0)=-16ln2,曲面在点P0的切平面方程为:4ln2(x-2)-4ln2(y-2)-16ln2(z-1)=0,即:x-y-4z=0,法线方程为:x-2y-2z-1,即:==4ln24ln2-16ln2x-2y-2z-1==11-44、解:∵?z1?z1=,=?xx+y?yx+y∴?z(1,2)={1111,={,x+yx+y(1,2)33又∵抛物线y2=4x在(1,2)点处的切线斜率为:dy=1dx(1,2)???={1,1}(1,2)????dy∴抛物线y=4x在(1,2)点处偏向x轴正向的切线方向为=?1,??dx2?11?∴T0=?,?22??习题1-61(题略).,2)222?11??11?=?,??,=+=?663?33??22?解:由的驻点,?f?f=4-2x=0,=-4-2y=0,有x=2,y=-2,即P0(2,-2)为f(x,y)?x?y?2f?2f?2f又2=-2,=0,2=-2,?x?x?y?y?2fD(P0)=4>0,2(P0)=-2?x故P0(2,-2)为f(x,y)的极大值点,其极大值为f(2,-2)=8.2(题略).??f2=3x-6y-39令0??x2-2y-13=0??x解:由?有?驻点:(5,6)和(1,-6)?f?y-3x+9=0?=2y-6x+18令0???y?2f∵2=6x?x?(5,6)=6x?2-(-6)2(5,6)?2f=2?y2?2f=-6?x?y?2f=24>0,而2?x=6x(5,6)=30(5,6)=(12x-36)(5,6)∴f(x,y)在点(5,6)取得极小值f(5,6)=-88又∵?(1,-6)=6x?2-(-6)2(1,-6)=(12x-36)(1,-6)=-243、求z=x2-y2在闭区域x2+4y2≤4上的最大值和最小值??z=2x=0??x解:由?,得唯一驻点(0,0)??z?=-2y=0???yx2又∵在边界x+4y=4即椭圆+y2=1上,z=x2-y2=4-5y2y∈(-1,1)422由d(4-5y)=0,得驻点:y=0∈(-1,1)dy∴所有可能的极值点为:(0,0)相应的函数值为: (2,0)4(-2,0)4(0,-1)-1(0,1)-14、求抛物线y=x2和直线x-y-2=0之间的最短距离。解:设P(x,y)为抛物线y=x2上任意一点,它到直线x-y-2=0的距离为d=x-y-22,d最小当且仅当d2最小1(x-y-2)2在条件y2=x下的最小值。2此问题即是求d2=解法1(用拉格朗日乘数法)122设L=(x-y-2)+λ(y-x)21??Lx=2?2(x-y-2)?1-2xλ令0?(1-2λ)x-y-2=0?111??由?Ly=?2(x-y-2)?(-1)+λ令0,即?λ-x+y+2=0得唯一驻点(,224?y-x2=0???Lλ=y-x2令0??故由实际问题知抛物线y=x2和直线x-y-2=0之间的最短距离在在,为:dmin=d11()24=728解法2(转化为无条件极值)设抛物线y=x2上点P(x,x2),它到直线x-y-2=0的距离为d=x-y-22=x-x2-221(x-x2-2)2最小2∵d最小当且仅当d2=1设f(x)=(x-x2-2)22∴f′(x)=(x-x2-2)?(1-2x)令0=>唯一驻点x=12f′′(x)=(1-2x)?(1-2x)+(x-x2-2)?(-2)=(1-2x)2+2(x2-x+2)1∵f′′(=(1-2x)2+2(x2-x+2)2[]12=7>02∴当x=∵d1时,f(x)有极小值,从而该极小值就是所求的最小值(∵唯一驻点)212=x-x2-2212=728728故抛物线y=x2和直线x-y-2=0之间的最短距离为5、求抛物线z=x2+y2被平面x+y+z=1截成一椭圆,求原点到此椭圆的最长与最短距离。解:设椭圆上任意一点为(x,y,z),它到原点的距离为d=x2+y2+z2?z=x2+y2此问题即是求d=x+y+z在条件?下的最大值和最小值。x+y+z=1?222令L=?L?x?Ly??由?Lz??Lλ?L??ux2+y2+z2+λ(x2+y2-z)+u(x+y+z-1)=2x+2λx+u令0①=2y+2λy+u令0②=2z-λ+u令0=x2+y2-z令0=x+y+z-1令0③④⑤由①-②得2(1+λ)(x-y)=0若λ=-1代入①,得u=0,1再代入④,∴z=-2∴λ≠-1,有x=y?2x2=z-1±3代入④,⑤由?,解得y=x=,z=2±2?2x+z=1∴驻点为:P1(-1+-1+-1--1-,,-1+3)和P2(,,-1-)2222∴dP=x2+y2+z21P1=9+53,dP2=x2+y2+z2P2=9-39+53和由实际问题知,所求最大值和最小值存在,分别为9-6(题略).解:设圆柱高为H,圆锥高为h,圆柱圆锥底半径为r,则浮标体积V=πr2H+2π2rh,3故:3V-πr2(3H+2h)=0(1)浮标表面积S(r,h,H)=2πrH+2πrr2+h2=2πr(H+r2+h2)令L(r,h,H)=2πr(H+r2+h2)+λ[3V-πr2(3H+2h)]?L由=2π(H+r2+h2)+2π?rr2r+h22-2rπλ(3H+2h)=0(2)?L=2π?h(3)rhr+h22-2πλr2=0?L=2πr-3πλr2=0?H(4)有λr=2,3代入(3)有hr2+h2-2r,=0,故=3h2r=h,再由(2),有2H=h,h=2r,(r,2r,2r)为S(r,h,H)唯一驻点,由于实际问题存在最值,故当H=h,r时,材料最省。=h27(题略)解S=设BC=a,则横截面积11S(BC+AD)h=(2a+2hctgθ )h=(a+h ctgθ )h,a= -h?ctgθ,湿周22hhShF(h, θ)==a+2CD=a+2=-h?ctgθ+2sinθhsinθ?fS2由=-2-ctgθ+=0?hhsinθ(1)?f1-2cosθ==02?θsinθ(2)由(2)有1-2cosθ=0,θ=π,3由(1),h=4SπS,即(,4)为唯一驻点,故当3θ=πS,h=4时,湿周最小.3习题2-11、解:在任意一个面积微元dσ上的压力微元dF=ρgxdσ,所以,该平面薄片一侧所受的水压力F=∫∫ρgxdσD2、解:在任意一个面积微元dσ上的电荷微元dF=u(x,y)dσ,所以,该平面薄片的电荷总量Q=∫∫u(x,y)dσD3、解:因为0≤x≤1,0≤y≤1,所以x2+y2+1≤x+y+1,又lnu为单调递增函数,所以lnx2+y2+1≤ln(x+y+1),由二重积分的保序性得2(0≤x≤10≤y≤1)∫∫ln(x+y2+1dσ≤)0≤x≤1∫∫ln(x+y+1)dσ0≤y≤14、解:积分区域D如图2-1-1所示,所以该物体的质量M=∫∫(x2+y2)dσ=D∫1 dy∫2-yy1884(x2+y2)dx=∫(-4y+4y2-y3)dy=033315、解:(1)积分区域如图2-1-2所示,所以∫dy∫f(x,y)dx=∫dx∫f(x,y)dy y11x(2)积分区域如图2-1-3所示,所以∫dy∫2f(x,y)dx=∫dx∫ 22y4xy0x/2f(x,y)dy,所以(3)2x-x2积分10区2-y域-y2+1如图2-1-4所示∫21dx∫2-xf(x,y)dy=∫dy∫f(x,y)dxelnx (4)积分区域如图2-1-5所示,所以∫dx∫f(x,y)dy=∫dy∫yf(x,y)dx 1ee6、解:(1)积分区域如图2-1-6所示,所以∫∫xDydσ=∫0dx∫x2221x22?41?6xydy=∫0x(x3/4-x3)dx=?x11/4-x5?=33?115?05511()2积4-y分区2域如图2-1-7所示,所以∫∫xydσ=∫dy∫D-2 xy2dx=2∫)dy=0215(3)积分区域如图2-1-8所示,所以x+ye∫∫dσ=∫dx∫D-1001+x-1-x2xex+ydy+∫dx∫ -11011-x-1+xex+ydy=∫ex(e1+x-e-1-x)dx+∫ex(e1-x-e-1+x)dx-1 =∫(ee-e)dx+∫(e-e-1e2x)dx=e-e-1-1(4)积分区域如图2-1-9所示,所以22(x+y-x)dσ=∫∫D∫2 dy∫yy/2(x2+y2-x)dx=13?19332?y-ydy=?∫0?8?6?2427、解:(1)积分区域如图2-1-10所示,令x=rcosθ,y=rsinθ,所以ππ-≤θ≤,0≤r≤a,故22∫∫Df(x,y)dσ=∫π2π-2dθ∫r?f(rcos,rsin)dr a(2)积分区域如图2-1-11所示,令x=rcosθ,y=rsinθ,所以0≤θ≤π,0≤r≤2sinθ,故∫∫f(x,y)dσ=∫Dπ dθ∫2sinθ r?f(rcosθ,rsinθ)dr8、解:(1)积分区域如图2-1-12所示,令x=rcosθ,y=rsinθ,所以0≤θ≤πsinθ,0≤r≤4cos2θ22-12,πsinθ2故π∫dx∫ 1x2x(x+y)4dy=∫4dθ∫cosθr?rdr=∫4secθtanθdθ=[secθ0=2-1-1 π(2)积分区域如图2-1-13所示,令x=rcosθ,y=rsinθ,所以0≤θ≤π,0≤r≤2sinθ,故∫a0dy∫a2-y20(x+y)dx=1)积22∫π20dθ∫a0πa4rdr=839、解:(分区域如图942-1-14所示,故2x1x22dσ=xdxdy=1∫∫2∫21xyDy∫21(-x+x3)dx=(2)积分区域如图2-1-15所示,令x=rcosθ,y=rsinθ,所以0≤θ≤π,0≤r≤12π,故∫∫D211-r-x2-y2π2σ=dθ?rdr=∫0∫01+r21+x2+y22-r311?π?rr?=?dr-dr∫∫??04042?-r-r?2411d(1-r)?π?1dr1?=?+∫∫??04042?24-r-r?1π?112142=?arcsinr0+(1-r)2?22?1∫11-r24 rdr?π?=(π-2)?80?(3)积分区域如图2-1-16所示,故∫∫(xD2+y)dσ=∫dy∫a23ayy-a(x+y)dx=22∫3aaa3(2ay-ay+dy=14a4322(4)积分区域如图2-1-17所示,令x=rcosθ,y=rsinθ,所以0≤θ≤2π,a≤r≤b,故∫∫(x+y)dσ=∫dθ∫r2dr=D 22122πba2π3(b-a3)310、解:积分区域如图2-1-18所示,由图形的对称性得:S=4S1=4∫∫dσ,D1所以S=4∫dθ∫ π4asin2θ rdr=2∫asin2θdθ=-acos2θ04=a2 π422π图2-1-1图2-1-2图2-1-3图2-1-4图2-1-5图2-1-6图2-1-7图2-1-8图2-1-912图2-1-10图2-1-11图2-1-图2-1-131-16图2-1-14图2-1-15图2-图2-1-17习题2-21、解:Q=∫∫∫u(x,y,z)dvOhm图2-1-182、化三重积分为直角坐标中的累次积分解:(1)因为积分区域Ohm的上曲面为开口向上的旋转抛物面z=x2+y2,下曲面为z=0,积分区域Ohm在xoy坐标面上的投影区域Dxy:0≤x≤1;0≤y≤1-x,所以∫∫∫f(x,y,z)dv=∫dx∫Ohm 11-x dy∫x2+y2 f(x,y,z)dz(2)因为积分区域Ohm的上曲面为开口向下的抛物柱面z=2-x2与下曲面为开口向上的旋转抛物面z=x2+2y2围成,二曲面的交线在xoy平面上的投影为圆-1≤x≤1??Ohm:?--x2≤y≤1-x2?x2+2y2≤z≤2-x2?x2+y2=1,即,所以∫∫∫f(x,y,z)dv=∫Ohm1-1dx∫-x--xdy∫2-x222x+2yf(x,y,z)dz(3)因为积分区域Ohm的上曲面为开口向上的旋转抛物面z=x2+y2,下曲面为z=0,积分区域Ohm在xoy坐标面上的投影区域Dxy:-1≤x≤1;x2≤y≤1,所以∫∫∫f(x,y,z)dv=∫Ohm1-1dx∫2dy∫x1x2+y2 f(x,y,z)dz3、解:积分区域Ohm如图2-2-1所示∫∫∫xzdxdydz=∫xdx∫2dy∫zdz=Ohm-111yx0∫1-1xdx∫2x11211ydy=∫x(1-x6)dx=026-1另解:因为积分区域Ohm关于坐标面yoz对称,又f(x,y,z)=xz关于第一坐标是奇函数,所以∫∫∫xzdxdydz=0。Ohm4、解:积分区域Ohm如图2-2-2所示,当0≤z≤h时,过(0,0,z)作平行与xoy面2?2R??x+y2≤?z??,因而D的半径为Rz,面的平面,与立体Ohm的截面为圆Dz:?z?h?h?z=z?πR22积为2z,故h∫∫∫zdxdydz=∫Ohmh πR2zdz∫∫dxdy=2hDz∫h πR2h2zdz=435、求下列立体Ohm的体积解(1)曲面所围立体是球体与旋转抛物面的一部分(如图2-2-3所示),用柱面坐标计算:V=∫∫∫dv=∫∫∫rdrdθdz==OhmOhm∫2π dθ∫drr 2-π2rdz4=∫2π 311222[-(5-r)-r4]2=π(55-4)03163图2-2-1图2-2-2图2-2-3(2)因为积分区域Ohm的上曲面为平面z=1-x,下曲面为z=0,积分区域Ohm在xoy坐标面上的投影区域Dxy:y2≤x≤1;-1≤y≤1,所以V=∫∫∫dv=∫dy∫2dx∫Ohm-1111-xy0111?11?8dz=∫dy∫2(1-x)dx=2∫?-y2+y4?dy=-1y022?15?6、利用柱面坐标计算下列三重积分解:(1)因为积分区域Ohm的上曲面为开口向上的上半球面z=2-x2-y2,下曲面为开口向上的旋转抛物面z=x2+y2,将z=x2+y2代入z=2-x2-y2得z=2-z,解此方程得z=1积分区域Ohm在xoy坐标面上的投影区域Dxy:x2+y2≤1,由柱坐标公式得:Dxy:0≤θ≤2π,0≤r≤1∫∫∫zdv=Ohm∫2π dθ∫dr∫2 12-rrzrdz=2π∫17π。r2-r2-r4dr=02121()(2)因为积分区域Ohm的上曲面为平面z=2,下曲面为开口向上的旋转抛物面2z=x2+y2,将z=2代入2z=x2+y2得x2+y2=4,所以积分区域Ohm在xoy坐标面上的投影区域Dxy:x2+y2≤4,由柱坐标公式得:Dxy:0≤θ≤2π,0≤r≤222(x+y)dv=∫∫∫Ohm∫2π 2221?16π?。dθ∫dr∫2r3dz=2π∫r3?2-r2?dr=0r/2023??7、利用球面坐标计算下列三重积分解:(1)用球面坐标计算4(x+y+z)dv=rsin?drd?dθ=dθsin?d?r∫∫∫∫∫∫∫∫∫drOhmOhm 22242ππ115?4=2π?(-cos?)0???r?=π?5?05π1(2)用球面坐标计算∫∫∫zdv=Ohm2rcos??rsin?drd?dθ=∫∫∫Ohm∫2π dθ∫π/4 sin?cos?dκ∫2acos? r3dr=2π?∫0π/4sin?cos??π/4π/41(2acos?)4d?=8πa4∫0sin?cos5?d?48πa4=-cos6?60=74πa68、选用适当的坐标计算下列三重积分?0≤r≤cos??π解:(1)积分区域Ohm为球,故用球面坐标计算:Ohm:?0≤?≤,所以2??0≤θ≤2π∫∫∫x+y+zdv=222∫2π dθ∫π/20π/2 d?∫cos? r?rsin?dr=2π∫2π/2 sin?d?∫cos? r3dr=2π∫1π1ππ/2sin??cos4??d?=-?cos5?0=42510(2)将z=2y代入z=x2+y2得到xoy平面上的一个圆x2+(y-1)2=1,用直角坐标公式计算∫∫∫zdv=Ohm∫1-1dx∫1+-x1-1-xdy∫22y2x+yzdz,由于计算量较大,请同学一试。用柱坐标计算x=rcosθ,y=rsinθ,z=z∫∫∫zdv=Ohm∫ π dθ∫2sinθ dr∫2r2rsinθzrdz=∫dθ∫ π2sinθ 1r(4r2sin2θ-r4)dr2=∫πsinθdθ==π3364226(3)用柱坐标x=rcosθ,y=rsinθ,z=z计算22zdv=dθdrz∫∫∫∫∫∫rdz=2π∫Ohm 2π12r132r16r(z)0dr=π03151(4)用直角坐标计算∫∫∫xyzOhm23dv=∫xdx∫ydy∫zdz= 1x2xy3∫xdx∫ 1x 121xy2441xydy=∫dx=0284364习题2-31、解:(1)因为连接点(1,0)和(2,1)的直线段的方程为y=x-1,1≤x≤2,所以∫(2)LL(x-y)-1ds=∫[x-(x-1)]-1+(1)2dx=∫12212dx=2(x∫2+y2ds=∫)n2π (a2cos2t+a2sin2t)n(-asint)2+(acost)2dt=∫a2n+1dt=2πa2n+1 2π(3)L2yds=2a∫32π0-costa(1-cost)]2+(asint)2dt3=2a2∫2π0(1-cost)dt=4πa2(4)因为星形线的参数方程为x=acos3t,y=asin3t,所以22π?2??x3+y3?ds=4∫2a3-3acos2tsint)2+(3asin2tcost)2dx??0L??5=12aπ3205∫costsintdx=6a3sin2t02=6a3π5(5)因为折线ABCD由线段AB,BC和CD构成,在线段AB上,x≡y≡0,在线的BC上,y≡0,而在线段CD上,x≡1,z≡2,y=t,0≤t≤3且ds=dy=dt∫xL2yzds=ABx2yzds+BCx2yzds+xyzds=0+0+∫012?t?2dt=923CD∫zds=∫tL t0cost-tsint2+(sint+tcost)2+1dt(6)=∫t0 11?2+t2d(2+t2)=?2+t0223?(32?-22??32、解:因为曲线L的极坐标方程为r=1,所以θs=∫Lds=4334r+(r′)dθ=224334+θ2θ,又2θ∫θ=tanu+θ2cosu1d(sinu)θ=?du=∫sin2ucos2u∫sin2u(1-sin2u)θ21/21/2??1=∫?2++?d(sinu)1-sinu1+sinu?sinu?111+sinu=-+ln+Csinu21-sinu+θ21=-+lnθ2所以+θ2+θ+θ-θ2+2θ+Cs=4334+θ253θ=+lnθ2122?03、解:s=∫ds=∫Lr2+r′2dθ=∫?aθ0? e2aθ+a2eaθdθ=+a2∫+a2a?edθ=(e-1)a习题2-41、(1)解:将曲面向xoy平面投影,得投影区域Dxy:x2+y2≤R2,从而有∫∫ΣzdS=∫∫DR2-x2-y22?3RR2xy-x2-y2=∫∫DRdxdy=R?πR=πRxy(2)解:将平面向XOY平面投影,得投影区域,Dxy分?0≤x≤2:?3x0≤y≤3-?2,从而有积∫∫Σ=4(z+2x+y)dS=3Dxy∫∫(4-2x-442y+2x+y)+z2x+zydxdy33∫∫D4xydxdy=4361(3)解:由∑1:z=1(x2+y2≤1)得dS=dxdy,Dxy:x2+y2≤1由∑2:z=(x+y)(0≤z≤1)得1x2y22dS=(1+2+dxdy=dxdyx+y2x2+y22212Dxy:x2+y2≤12π1∫∫∑∫∫Σ所以,∑zx+ydS=221∫∫DDxyx+ydxdy=222dθr∫∫dr=2π?002π01xy12π=;3322zx2+y2dS=∫∫(x2+y2)2dxdy=2∫dθ∫r2rdr= 2222222zx+ydS=(x+y)dS+(x+y)dS=∫∫∫∫∫∫∑1∑22π2+π322、解:将被截得的平面向XOY平面投影,又有已知条件的,z=c-ccx-y,abcczx=-,zy=-,设所求的面积为A,则有abA=∫∫ΣdS=∫∫D+(-xyc2c1)+(-)2dxdy=ab2a2b2+a2c2+c2b23、解:将曲面向XOY平面投影,得投影区域,Dxy:x2+y2≤4,且zx=-2x,zy=-2y,设所求的面积为A,则有A==∫∫ΣdS=2∫∫D+(-2x)22+(-2y)322dxdy?-1??xy∫02πdθ∫0+4rrdr?1=π?(17)6?4、解:以圆环的中心为坐标原点建立坐标系,则容易知道圆环薄片的面密度为:ρ(x,y)=1x2+y2,当x2+y2≠4时,设薄片的质量为M,则有12π4M=2π?2+∫∫Σx2+y222dxdy=4π+∫dθ∫ 21?rdr=8πraaa225、∵ρ(x,y)=k(x+y),而ρ(,)=ρ0,∴ρ0=k?,k=2ρ0222aaa224a2ρ02222M=∫∫2ρ0(x+y)ds=2ρ0∫dx∫(x+y)dy=aa3s00习题2-53xρ(x,y)dσ=xydσ=(x∫∫∫∫∫∫2ydy)dx31xDD0x1、解:1x6x811=(-)|0=2684822122yρ(x,y)dσ=xydσ=(x∫∫∫∫∫∫2ydy)dxxDD0x1x6x911=(-|0=36954∫∫Dρ(x,y)dσ=∫∫xydσ=∫(∫2x2ydy)dxD 21xx1x5x711=(-|0=2573511-35-=,y=54=,重心(,352、解:设P(x,y)为三角形上一点,则容易知道此点的密度为ρ(x,y)=x2+y2。∫∫xρ(x,y)dσ=∫∫x(xDD2+y)dσ=2∫(∫ aa-x x(x2+y2)dy)dx4x5ax4a2x3a3x2aa5=(-+-+)|0=1523615∫∫Dyρ(x,y)dσ=∫∫Dy(x+y)dσ=22∫a (∫a-y0y(x2+y2)dx)dy4y5ay4a2y3a3y2aa5=(-+-+)|0=1523615∫∫Dρ(x,y)dσ=∫∫(x+y)dσ=∫(∫22aa-xD00(x2+y2)dy)dx4x42ax3a2x2a3xaa4=(-+-+|0=123236重心:(2a2a,553、解:(1)由对称性知道重心一定在z轴上。∫∫∫zρdv=∫∫∫zdv=∫∫(OhmOhm1Dxyx2+y2zdz)dxdy=122[1-(x+y)]dxdy∫∫2Dxy12π112πr2r41π2=∫(∫(1-r)rdr)dθ=∫(-|0dθ=而圆锥的体积为:V=π3。所以重心为:(0,0,)。34(2)容易知道此几何体是两个同心半球之间的部分,且重心一定在z轴上。而∫∫∫ρdv=∫∫∫dv=∫OhmOhm2π dθ∫d?∫ρ?ρsin?dρ π2Aaρ3A2π3=2π?[(-cos?)|]?(|a)=(A-a3)33π20∫∫∫zρdv=∫∫∫zdv=∫OhmOhm2ππ20 dθ∫d?∫aρcos??ρ?ρsin?dρA122ρ4Aπ4=2π?(sin?|0)?(|a)=(A-a4)2443(A4-a4)重心:(0,0,)。8(A3-a3)4、解:以圆柱下底面的圆心为坐标原点,以转动轴为z轴建立坐标系,设P(x,y,z)为圆柱体上一点,则此点到转动轴的距离为r=x2+y2,因此πIz=∫∫∫r2ρ(x,y,z)dv=∫∫∫(x2+y2)dv=∫dz∫dθ∫r2?rdrOhmOhm h2πa=1πha425、解:设P(x,y,z)为弹簧上一点,则P到Z轴的距离为r=x2+y2,因此有Iz=∫r?ρ(x,y,z)ds=∫a2?(a2+k2t2)?a2+k2dtL 22π1222π=a2a2+k2?(a2t+k2t3)|2=aa+k2(3πa2+4k2π3)0336、解:有对称性知道Fy=0。Fx=G∫∫DR21ρ(x,y)x3π(x2+y2+a2)211dσ=Gρ∫(∫2π-2R2rcosθ3R1rdr)dθ(r2+a2)2=2Gρ∫R[-a23]dr(r2+a2)2(r2+a2)2rr2R2r2=2Gρ[(ln(++2)|R1)-(|RR1)]aaa2+r2=2Gρ[ln2R2+R2+a2R1+R+a212-2R2a+R22+2R1a+Rπ2π-2R221(x2+y2+a2)2R21122=-aGρπ∫d(r+a)3R12(r2+a2)212=aGρπ|RR1a2+r211=aGρπ(-)a2+R22a2+R127、解:由对称性知道Fx=Fy=0。Fz=-aG∫∫Dρ(x,y)3dσ=-aGρ∫(∫13R1rdr)dθ(r2+a2)2[x2+y2+(z-a)2]2πRh(z-a)=Gρ∫dθ∫rdr∫dz3000[r2+(z-a)2]2=-2πGρ∫{[(z-a)+r] Fz=G∫∫∫Ohmρ(x,y,z)(z-a)32dvR22-1212|h0}rdr-[a+r]2}rdr221222-1=-2πGρ∫{[(h-a)+r] 2212R22-=-2πGρ{[(h-a)+r]-(a+r)}|R0=-2πGρ{[(h-a)+R]-(a+R)-[(h-a)-a]}=-2πGρ{[(h-a)+R]-(a+R)2-h+2a}212212221222212习题2-11、解:在任意一个面积微元dσ上的压力微元dF=ρgxdσ,所以,该平面薄片一侧所受的水压力F=∫∫ρgxdσD2、解:在任意一个面积微元dσ上的电荷微元dF=u(x,y)dσ,所以,该平面薄片的电荷总量Q=∫∫u(x,y)dσD3、解:因为0≤x≤1,0≤y≤1,所以x2+y2+1≤x+y+1,又lnu为单调递增函数,所以lnx2+y2+1≤ln(x+y+1),由二重积分的保序性得2(0≤x≤10≤y≤1)∫∫ln(x+y2+1dσ≤)0≤x≤1∫∫ln(x+y+1)dσ0≤y≤14、解:积分区域D如图2-1-1所示,所以该物体的质量M=∫∫(x+y)dσ=D22∫1 dy∫2-yy884(x+y)dx=∫(-4y+4y2-y3)dy=033322115、解:(1)积分区域如图2-1-2所示,所以∫dy∫f(x,y)dx=∫dx∫f(x,y)dy y11x(2)积分区域如图2-1-3所示,所以∫dy∫2f(x,y)dx=∫dx∫ 22y4xy0x/2f(x,y)dy,所以(3)2x-x2积分10区2-y域-y2+1如图2-1-4所示∫21dx∫2-xf(x,y)dy=∫dy∫f(x,y)dxelnx (4)积分区域如图2-1-5所示,所以∫dx∫f(x,y)dy=∫dy∫yf(x,y)dx 1ee6、解:(1)积分区域如图2-1-6所示,所以∫∫xDydσ=∫0dx∫x2221x22?41?6xydy=∫0x(x3/4-x3)dx=?x11/4-x5?=33?115?05511()2积4-y分区2域如图2-1-7所示,所以∫∫xydσ=∫dy∫D-2 xy2dx=2∫)dy=0215(3)积分区域如图2-1-8所示,所以∫∫eDx+ydσ=∫dx∫-10-101+x-1-xex+ydy+∫dx∫01011-x-1+xex+ydy=∫ex(e1+x-e-1-x)dx+∫ex(e1-x-e-1+x)dx-1 =∫(ee2x-e-1)dx+∫(e-e-1e2x)dx=e-e-1(4)积分区域如图2-1-9所示,所以∫∫(x+y-x)dσ=D22∫2 dy∫yy/2(x+y-x)dx=2213?19332?y-ydy=??∫0?248?627、解:(1)积分区域如图2-1-10所示,令x=rcosθ,y=rsinθ,所以ππ-≤θ≤,0≤r≤a,故22∫∫Df(x,y)dσ=π∫2π-2dθ∫r?f(rcos,rsin)dr a(2)积分区域如图2-1-11所示,令x=rcosθ,y=rsinθ,所以0≤θ≤π,0≤r≤2sinθ,故∫∫f(x,y)dσ=∫Dπ dθ∫2sinθ r?f(rcosθ,rsinθ)dr8、解:(1)积分区域如图2-1-12所示,令x=rcosθ,y=rsinθ,所以0≤θ≤πsinθ,0≤r≤4cos2θ-12,πsinθ故π40∫dx∫ 1x2x(x2+y2)dy=∫4dθ∫cosθr?r-1dr=∫4secθtanθdθ=[secθ=-1 π(2)积分区域如图2-1-13所示,令x=rcosθ,y=rsinθ,所以0≤θ≤π,0≤r≤2sinθ,故∫a0dy∫a2-y20(x+y)dx=1)积22∫π20dθ∫a0πa4rdr=839、解:(分区域如图942-1-14所示,故2x1x22dσ=∫xdx12dy=∫∫21yxyD∫21(-x+x3)dx=(2)积分区域如图2-1-15所示,令x=rcosθ,y=rsinθ,所以0≤θ≤π,0≤r≤12,故∫∫Dπ211-r-x2-y2π2dθσ=?rdr=∫0∫01+r21+x2+y22∫11-r2-r4 rdr311?π?rr?=?∫dr-∫dr??04042?-r-r?π?11dr211d(1-r4)??=?+∫∫?04042?24-r-r??11?1π?11π=?arcsinr20+(1-r4)2?=(π-2)2?22?80??(3)积分区域如图2-1-16所示,故∫∫(xD2+y)dσ=∫dy∫a23ayy-a(x+y)dx=22∫3aaa3(2ay-ay+dy=14a4322(4)积分区域如图2-1-17所示,令x=rcosθ,y=rsinθ,所以0≤θ≤2π,a≤r≤b,故∫∫(x+y)dσ=∫dθ∫r2dr=D 22122πba2π3(b-a3)310、解:积分区域如图2-1-18所示,由图形的对称性得:S=4S1=4∫∫dσ,D1所以S=4∫dθ∫ π4asin2θ rdr=2∫asin2θdθ=-acos2θ04=a2 π422π图2-1-1图2-1-2图2-1-3图2-1-4图2-1-5图2-1-6图2-1-7图2-1-8图2-1-912图2-1-10图2-1-11图2-1-图2-1-131-16图2-1-14图2-1-15图2-图2-1-17习题2-21、解:Q=∫∫∫u(x,y,z)dvOhm图2-1-182、化三重积分为直角坐标中的累次积分解:(1)因为积分区域Ohm的上曲面为开口向上的旋转抛物面z=x2+y2,下曲面为z=0,积分区域Ohm在xoy坐标面上的投影区域Dxy:0≤x≤1;0≤y≤1-x,所以∫∫∫f(x,y,z)dv=∫dx∫Ohm 11-x dy∫x2+y2 f(x,y,z)dz(2)因为积分区域Ohm的上曲面为开口向下的抛物柱面z=2-x2与下曲面为开口向上的旋转抛物面z=x2+2y2围成,二曲面的交线在xoy平面上的投影为圆-1≤x≤1??Ohm:?--x2≤y≤1-x2?x2+2y2≤z≤2-x2?x2+y2=1,即,所以∫∫∫f(x,y,z)dv=∫Ohm1-1dx∫-x--xdy∫2-x222x+2yf(x,y,z)dz(3)因为积分区域Ohm的上曲面为开口向上的旋转抛物面z=x2+y2,下曲面为z=0,积分区域Ohm在xoy坐标面上的投影区域Dxy:-1≤x≤1;x2≤y≤1,所以∫∫∫f(x,y,z)dv=∫Ohm1-1dx∫2dy∫x1x2+y2 f(x,y,z)dz3、解:积分区域Ohm如图2-2-1所示∫∫∫xzdxdydz=∫xdx∫2dy∫zdz=Ohm-111yx0∫1-1xdx∫2x11211ydy=∫x(1-x6)dx=026-1另解:因为积分区域Ohm关于坐标面yoz对称,又f(x,y,z)=xz关于第一坐标是奇函数,所以∫∫∫xzdxdydz=0。Ohm4、解:积分区域Ohm如图2-2-2所示,当0≤z≤h时,过(0,0,z)作平行与xoy面?2R?x+y2≤??的平面,与立体Ohm的截面为圆Dz:??h?z=z??z?,因而D的半径为Rz,面z?h2πR22积为2z,故h∫∫∫zdxdydz=∫Ohmh πR2zdz∫∫dxdy=2hDz∫h πR2h2zdz=435、求下列立体Ohm的体积解(1)曲面所围立体是球体与旋转抛物面的一部分(如图2-2-3所示),用柱面坐标计算:V=∫∫∫dv=∫∫∫rdrdθdz==OhmOhm∫2π dθ∫drr 2-π2rdz4=∫2π 311222[-(5-r)-r4]2=π(55-4)03163图2-2-1图2-2-2图2-2-3(2)因为积分区域Ohm的上曲面为平面z=1-x,下曲面为z=0,积分区域Ohm在xoy坐标面上的投影区域Dxy:y2≤x≤1;-1≤y≤1,所以V=∫∫∫dv=∫dy∫2dx∫Ohm-1111-xy01?8?1dz=∫dy∫2(1-x)dx=2∫?-y2+y4?dy=-1y022?15?1116、利用柱面坐标计算下列三重积分解:(1)因为积分区域Ohm的上曲面为开口向上的上半球面z=2-x2-y2,下曲面为开口向上的旋转抛物面z=x2+y2,将z=x2+y2代入z=2-x2-y2得z=2-z,解此方程得z=1积分区域Ohm在xoy坐标面上的投影区域Dxy:x2+y2≤1,由柱坐标公式得:Dxy:0≤θ≤2π,0≤r≤1∫∫∫zdv=Ohm∫2π dθ∫dr∫2 12-rrzrdz=2π∫17πr2-r2-r4dr=。02121()(2)因为积分区域Ohm的上曲面为平面z=2,下曲面为开口向上的旋转抛物面2z=x2+y2,将z=2代入2z=x2+y2得x2+y2=4,所以积分区域Ohm在xoy坐标面上的投影区域Dxy:x2+y2≤4,由柱坐标公式得:Dxy:0≤θ≤2π,0≤r≤222(x+y)dv=∫∫∫Ohm∫2π 2221?16π?dθ∫dr∫2r3dz=2π∫r3?2-r2?dr=。0r/2023??7、利用球面坐标计算下列三重积分解:(1)用球面坐标计算22244∫∫∫(x+y+z)dv=∫∫∫rsin?drd?dθ=∫dθ∫sin?d?∫rdrOhmOhm 2ππ115?4π=2π?(-cos?)0???r?=π?5?051(2)用球面坐标计算∫∫∫zdv=∫∫∫rcos??rOhmOhm2sin?drd?dθ=∫2π dθ∫π/4 sin?cos?dκ∫2acos? r3dr=2π?∫0π/4sin?cos??π/4π/41(2acos?)4d?=8πa4∫0sin?cos5?d?48πa4=-cos6?60=74πa68、选用适当的坐标计算下列三重积分?0≤r≤cos??π解:(1)积分区域Ohm为球,故用球面坐标计算:Ohm:?0≤?≤,所以2??0≤θ≤2π∫∫∫x2+y2+z2dv=∫2π dθ∫π/20π/2 d?∫cos? r?r2sin?dr=2π∫π/2 sin?d?∫cos? r3dr=2π∫1π1ππ/2sin??cos4??d?=-?cos5?0=42510(2)将z=2y代入z=x2+y2得到xoy平面上的一个圆x2+(y-1)2=1,用直角坐标公式计算∫∫∫zdv=Ohm∫1-1dx∫1+-x1-1-xdy∫22y2x+yzdz,由于计算量较大,请同学一试。用柱坐标计算x=rcosθ,y=rsinθ,z=z∫∫∫zdv=Ohm∫ π dθ∫2sinθ dr∫2r2rsinθzrdz=∫dθ∫ π2sinθ 1r(4r2sin2θ-r4)dr2=∫πsinθdθ==π3364226(3)用柱坐标x=rcosθ,y=rsinθ,z=z计算22zdv=dθdrz∫∫∫∫∫∫rdz=2π∫Ohm 2π12r132r16r(z)0dr=π03151(4)用直角坐标计算∫∫∫xyzOhm23dv=∫xdx∫ydy∫zdz= 1x2xy3∫xdx∫ 1x 121xy2441xydy=∫dx=0284364习题2-32、解:(1)因为连接点(1,0)和(2,1)的直线段的方程为y=x-1,1≤x≤2,所以∫(2)LL(x-y)-1ds=∫[x-(x-1)]-1+(1)2dx=∫12212dx=2(x∫2+y2ds=∫)n2π (a2cos2t+a2sin2t)n(-asint)2+(acost)2dt=∫a2n+1dt=2πa2n+1 2π(3)L2yds=2a∫32π0-costa(1-cost)]2+(asint)2dt3=2a2∫2π0(1-cost)dt=4πa2(4)因为星形线的参数方程为x=acos3t,y=asin3t,所以22π?2??x+yds=4a-3acostsint)+(3asintcost)dx∫??0L??5=12aπ32052∫costsintdx=6a3sint02=6a3π5(5)因为折线ABCD由线段AB,BC和CD构成,在线段AB上,x≡y≡0,在线的BC上,y≡0,而在线段CD上,x≡1,z≡2,y=t,0≤t≤3且ds=dy=dt∫Lx2yzds=LABx2yzds+t00BCx2yzds+x2yzds=0+0+∫012?t?2dt=9CD3∫zds=∫t(6)=∫t00cost-tsint2+(sint+tcost)2+1dt11?2+t2d(2+t2)=?2+t0223?(32?-22??32、解:因为曲线L的极坐标方程为r=1,所以θs=∫Lds=4334r2+(r′)dθ=24334+θ2θ,又θ2∫θ=tanu+θ2cosu1d(sinu)θ=?du=∫sin2ucos2u∫sin2u(1-sin2u)θ21/21/2??1=∫?2++?d(sinu)1-sinu1+sinu?sinu?111+sinu=-+ln+Csinu21-sinu+θ21=-+lnθ2所以+θ2+θ+θ-θ2+2θ+Cs=4334+θ253θ=+lnθ2122?03、解:s=∫ds=∫Lr2+r′2dθ=∫?aθ0? e2aθ+a2eaθdθ=+a2∫+a2a?edθ=(e-1)a习题2-41、(1)解:将曲面向xoy平面投影,得投影区域Dxy:x2+y2≤R2,从而有∫∫ΣzdS=∫∫DR2-x2-y22?3RR2xy-x2-y2=∫∫DRdxdy=R?πR=πRxy(2)解:将平面向XOY平面投影,得投影区域,Dxy分?0≤x≤2:?3x0≤y≤3-?2,从而有积∫∫Σ=4(z+2x+y)dS=3Dxy∫∫(4-2x-442y+2x+y)+z2x+zydxdy33∫∫D4xydxdy=4361(3)解:由∑1:z=1(x2+y2≤1)得dS=dxdy,Dxy:x2+y2≤1由∑2:z=(x+y)(0≤z≤1)得1x2y2dS=(1+2+22dxdy=dxdy22x+yx+y2212Dxy:x2+y2≤12π1∫∫∑∫∫Σ所以,∑zx+ydS=221∫∫DDxyx+ydxdy=222∫dθ∫rdr=2π?002π01xy12π=;3322zx2+y2dS=∫∫(x2+y2)2dxdy=∫dθ∫r2rdr= 2222222zx+ydS=(x+y)dS+(x+y)dS=∫∫∫∫∫∫∑1∑22π2+π322、解:将被截得的平面向XOY平面投影,又有已知条件的,z=c-ccx-y,abcczx=-,zy=-,设所求的面积为A,则有abA=∫∫ΣdS=Dxy∫∫+(-c2c1)+(-)2dxdy=ab2a2b2+a2c2+c2b23、解:将曲面向XOY平面投影,得投影区域,Dxy:x2+y2≤4,且zx=-2x,zy=-2y,设所求的面积为A,则有A==∫∫ΣdS=2∫∫D+(-2x)22+(-2y)322dxdy?-1??xy∫02πdθ∫0+4rrdr?1=π?(17)6?4、解:以圆环的中心为坐标原点建立坐标系,则容易知道圆环薄片的面密度为:ρ(x,y)=1x2+y2,当x2+y2≠4时,设薄片的质量为M,则有12π4M=2π?2+∫∫Σx2+y222dxdy=4π+∫dθ∫ 21?rdr=8πraaa225、∵ρ(x,y)=k(x+y),而ρ(,)=ρ0,∴ρ0=k?,k=2ρ0222aaa224a2ρ02222M=∫∫2ρ0(x+y)ds=2ρ0∫dx∫(x+y)dy=aa3s00习题2-53xρ(x,y)dσ=xydσ=(x∫∫∫∫∫∫2ydy)dx31xDD0x8、解:1x6x811=(-)|0=2684822122yρ(x,y)dσ=xydσ=(x∫∫∫∫∫∫2ydy)dxxDD0x1x6x911=(-|0=36954∫∫Dρ(x,y)dσ=∫∫xydσ=∫(∫2x2ydy)dxD 21xx1x5x711=(-|0=2573511-35-353535x==,y==,重心(,359、解:设P(x,y)为三角形上一点,则容易知道此点的密度为ρ(x,y)=x2+y2。∫∫Dxρ(x,y)dσ=∫∫Dx(x2+y2)dσ=∫a0(∫a-x x(x2+y2)dy)dx4x5ax4a2x3a3x2aa5=(-+-+)|0=1523615∫∫Dyρ(x,y)dσ=∫∫Dy(x+y)dσ=22∫a (∫a-y0y(x2+y2)dx)dy4y5ay4a2y3a3y2aa5=(-+-+)|0=1523615∫∫Dρ(x,y)dσ=∫∫(x2+y2)dσ=∫(∫D aa-x (x2+y2)dy)dx4x42ax3a2x2a3xaa4=(-+-+|0=123236重心:(2a2a,5510、解:(1)由对称性知道重心一定在z轴上。1∫∫∫zρdv=∫∫∫zdv=∫∫(OhmOhmDxyx2+y2zdz)dxdy=122[1-(x+y)]dxdy∫∫2Dxy12π112πr2r41π2=∫(∫(1-r)rdr)dθ=∫(-|0dθ=而圆锥的体积为:V=π3。所以重心为:(0,0,)。34(2)容易知道此几何体是两个同心半球之间的部分,且重心一定在z轴上。而∫∫∫ρdv=∫∫∫dv=∫OhmOhm2π dθ∫d?∫ρ?ρsin?dρ π2Aaρ3A2π3=2π?[(-cos?)|]?(|a)=(A-a3)33π20∫∫∫zρdv=∫∫∫zdv=∫OhmOhm2ππ20 dθ∫d?∫aρcos??ρ?ρsin?dρA122ρ4Aπ4=2π?(sin?|0)?(|a)=(A-a4)2443(A4-a4)重心:(0,0,)。338(A-a)11、解:以圆柱下底面的圆心为坐标原点,以转动轴为z轴建立坐标系,设πP(x,y,z)为圆柱体上一点,则此点到转动轴的距离为r=x2+y2,因此Iz=∫∫∫r2ρ(x,y,z)dv=∫∫∫(x2+y2)dv=∫dz∫dθ∫r2?rdrOhmOhm h2πa=12、有1πha42解:设P(x,y,z)为弹簧上一点,则P到Z轴的距离为r=x2+y2,因此Iz=∫r2?ρ(x,y,z)ds=∫a2?(a2+k2t2)?a2+k2dtL 2π1222π=a2a2+k2?(a2t+k2t3)|2=aa+k2(3πa2+4k2π3)03313、解:有对称性知道Fy=0。Fx=G∫∫DR21ρ(x,y)x3π(x2+y2+a2)211dσ=Gρ∫2π(∫-2R2rcosθ3R1rdr)dθ(r2+a2)2=2Gρ∫R[-a23]dr(r2+a2)2(r2+a2)2rr2R2r2=2Gρ[(ln(++2)|R1)-(|RR1)]aaa2+r2=2Gρ[ln2R2+R2+a2R1+R+a212-R22a2+R2+π2π-2R1a2+R12R2(x2+y2+a2)2R211=-aGρπ∫d(r2+a2)3R12(r2+a2)212=aGρπ|RR1a2+r211=aGρπ(-)2222a+R2a+R114、Fz=-aG∫∫Dρ(x,y)3dσ=-aGρ∫(∫13R1rdr)dθ(r2+a2)2解:由对称性知道Fx=Fy=0。Fz=G∫∫∫Ohm2πρ(x,y,z)(z-a)[x2+y2+(z-a)2]R032dvdz=Gρ∫dθ∫0rdr∫h(z-a)[r2+(z-a)2]22-121232 =-2πGρ∫0{[(z-a)+r]=-2πGρ∫{[(h-a)+r] 1222R|h0}rdr-[a+r]}rdr12222-12R22-=-2πGρ{[(h-a)+r]-(a+r)2}|R011=-2πGρ{[(h-a)2+R2]2-(a2+R2)2-[(h-a)-a]}=-2πGρ{[(h-a)+R]-(a+R)2-h+2a}2122122习题4-11.(1)记一般项为un,则u1=111,u2=,u3=,2?1-12?2-12?3-1u4=1,…2?4-1故un=12n-11-1(2)记一般项为un,则1)3-1·1+3,…3u1=(-1)·1+11+2,u2=(-1)2-1·,u3=(-12故un=(-1)n-1·11+nn234x2x2x2x2(3)记一般项为un,则u1=,u2=2,u3=3,u4=4,…2?1!2?2!2?3!2?4!nx2故un=n2?n!(4)记一般项为un,则u1=(-1)1-1a1+1?,u2=(-1)2?1+12-1a2+1?,u3=(-2?2+11)3-1a3+1,…?2?3+1故un=(-1)n-1an+1?2n+12.(1)Σ(2)Σ(3)Σ(4)Σ∞∞∞1+n1+11+21+3=+++?22221+n1+11+21+3n=1∞1?3?(2n-1)11?31?3?5=+++?2?4?2n22?42?4?6n=1(-1)n-15n=n=1111-+-?51015n!1!2!3!=1+2+3+?nn123n=1本文由()首发,转载请保留网址和出处!
免费下载文档:

我要回帖

更多关于 微积分求曲线长度 的文章

 

随机推荐