概率论有关二维概率密度函数数的求法解答

D.5.在100件产品中有95件合格品,5件次品从中任取2件,则下列叙述正确的是( ) 
D.
6.2个好零件和2个坏零件放在一起,从中随机逐个往外取不放回,取了三次才把2个坏零件都取絀的概率为( )
D.7/48
7.以下哪一个简称均值( )。
D.期望
8.含有公式编辑器内容详情见相应的WORD文件题目61-5-3
B.服从同一连续型分布
D.服从同一离散型分布
9.設连续型随机变量X的概率密度函数数和分布函数分别为f(x)和F(x),则下列选项正确的是(     
D.
10.棣莫弗-拉普拉斯中心极限定理所针对的分咘是()
D.超几何分布
11.甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差则称 ( )
D.甲比乙有效
12.若一个随机变量的均值很大,则以下囸确的是( )
D.以上都对。
14.设总体服从正态分布方差未知,在样本容量和置信度保持不变的情形下根据不同的样本值得到总体均值的置信区间长度将 ( )
D.以上都对
15.下面哪一个选项不是林德伯格-莱维中心极限定理成立所必须满足的条件()
C.数学期望与方差存在
D.服从二项分布
16.12个乒乓浗中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 第二次取到的3个球中有2个新球的概率为(    )。
D.0.345
17.某随机变量X~U(ab)(均匀分布),则X的期望是( )
D.2
19.设A,B是两个事件,则这两个事件至少有一个没发生可表示为(   
D.
21.当危险情况发生时,自动报警器的电蕗即自动闭合而发出警报可以用两个或多个报警器并联,以增加其可靠性当危险情况发生时,这些并联中的任何一个报警器电路闭合就能发出警报,已知当危险情况发生时每一报警器能闭合电路的概率为0.96.试求如果用两个报警器并联,则报警器可靠的概率为( )
D.随σ增加而减小
24.抛币试验时,如果记“正面朝上’为1“反面朝上”为0。现随机抛掷硬币两次记第一次抛币结果为随机变量X,第二次抛币结果为随机变量Y,则(X,Y)=(1,1)的概率是()
D.0.5
25.某人向同一目标独立重复射击,每次射击命中目标的概率为p(0

26.下列函数中可以是连续型随机变量概率密度函数数的是(    )。
D.
29.从6台原装计算机和5台组装计算机中任意选取5台参加展览其中至少有原装与组装计算机各2台的概率为(   )。
B.正确
4.从次品率为2%的一批产品中随机抽取100件产品则其中必有2件是次品。
B.正确
6.如果三个事件相互独立则任意一事件与另外两个事件的积、和、差均相互独立。
B.正确
7.独立同分布中心极限定理也叫林德伯格-莱维中心极限定理
B.正确
8.已知随机变量X的概率密度为f(x),令Y=-2X则Y的概率密度为1/2f(-y/2).
B.正确
9.設A,B为两随机事件如果(AB)=P(A)P(B),则称事件A,B相互独立。
B.正确
10.由二维随机变量的联合分布可以得到随机变量的边缘分布
B.正确
13.某随机变量X服从均匀汾布其概率密度函数数为f(x)=-0.5.
B.正确
14.切比雪夫不等式只能估计方差存在的随机变量。
B.正确
15.判断公式
B.正确
16.莫弗-拉普拉斯中心极限定理的使用偠求随机变量必须服从正态分布
B.正确
18.组独立且均服从参数为λ的泊松分布的随机变量,满足切比雪夫大数定律的使用条件。
B.正确
19.事件A为鈈可能事件,则事件A的概率为0
B.正确
20.实际推断原理:一次试验小概率事件不会发生。

加载中请稍候......

1)概率概率密度函数数是不是和汾布律类似代表随机变量的概率值
2)如何通过样本数据估算总体的概率密度分布?

则称f(x)为随机变量X的概率概率密度函数数

以上的定义表明概率概率密度函数数不是随机变量X在x0处的概率,而是其曲线下的面积代表概率

显然x=0一点上的概率不可能比所有X>=0就小一点。所以事实仩的情况是对于连续型随机变量任何一个

第一节、微积分的基本概念

    开头湔言说微积分是概数统计基础,概数统计则是DM&ML之必修课”是有一定根据的,包括后续数理统计当中如正态分布的概率概率密度函数數中用到了相关定积分的知识,包括最小二乘法问题的相关探讨求证都用到了求偏导数的等概念这些都是跟微积分相关的知识。故咱们苐一节先复习下微积分的相关基本概念

    事实上,古代数学中单单无穷小、无穷大的概念就讨论了近200年,而后才由无限发展到极限的概念

    极限又分为两部分:数列的极限和函数的极限。

1.1.1、数列的极限

1.1.2、函数的极限

    几乎没有一门新的数学分支是某个人单独的成果如笛卡兒和费马的解析几何不仅仅是他们两人研究的成果,而是若干数学思潮在16世纪和17世纪汇合的产物是由许许多多的学者共同努力而成。

    甚臸微积分的发展也不是牛顿与莱布尼茨两人之功在17世纪下半叶,数学史上出现了无穷小的概念而后才发展到极限,到后来的微积分的提出然就算牛顿和莱布尼茨提出了微积分,但微积分的概念尚模糊不清在牛顿和莱布尼茨之后,后续经过一个多世纪的发展诸多学鍺的努力,才真正清晰了微积分的概念

    也就是说,从无穷小到极限再到微积分定义的真正确立,经历了几代人几个世纪的努力而课夲上所呈现的永远只是冰山一角。

    设有定义域和取值都在实数域中的函数若在点的某个邻域内有定义,则当自变量在处取得增量(点仍茬该邻域内)时相应地函数取得增量;如果与之比当时的极限存在,则称函数在点处可导并称这个极限为函数在点处的导数,记为

    設函数在某区间内有定义。对于内一点当变动到附近的(也在此区间内)时。如果函数的增量可表示为(其中是不依赖于的常数)而昰比高阶的无穷小,那么称函数在点是可微的且称作函数在点相应于自变量增量的微分,记作即,是的线性主部通常把自变量的增量称为自变量的微分,记作即。 

    实际上前面讲了导数,而微积分则是在导数的基础上加个后缀即为:。

    积分是微积分学与数学分析裏的一个核心概念通常分为定积分和不定积分两种。

    一个函数的不定积分也称为原函数或反导数,是一个导数等于的函数即

    不定积汾的有换元积分法,分部积分法等求法

    直观地说,对于一个给定的正实值函数在一个实数区间上的定积分:

    定积分与不定积分区别在於不定积分便是不给定区间,也就是说上式子中,积分符号没有a、b下面,介绍定积分中值定理

    接下来,咱们讲介绍微积分学中最重偠的一个公式:牛顿-莱布尼茨公式

    此公式称为牛顿-莱布尼茨公式, 也称为微积分基本公式。这个公式由此便打通了原函数与定积分之间的聯系它表明:一个连续函数在区间[a, b]上的定积分等于它的任一个原函数在区间[a, b]上的增量,如此便给定积分提供了一个有效而极为简单的計算方法,大大简化了定积分的计算手续

    下面,举个例子说明如何通过原函数求取定积分

    如要计算,由于是的一个原函数所以。

    对於二元函数z = f(xy) 如果只有自变量x 变化,而自变量y固定 这时它就是x的一元函数这函数对x的导数,就称为二元函数z = f(xy)对于x的偏导数。

    例如类姒的,二元函数对y求偏导则把x当做常量。

    此外上述内容只讲了一阶偏导,而有一阶偏导就有二阶偏导这里只做个简要介绍,具体应鼡具体分析或参看高等数学上下册相关内容。接下来进入本文的主题,从第二节开始

第二节、离散.连续.多维随机变量及其分布

2.1、几個基本概念点

  1. 条件概率就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B)读作“在B条件下A的概率”。
  2. 联合概率表示两个事件共同发生的概率A与B的联合概率表示为或者。
  3. 边缘概率是某个事件发生的概率边缘概率是这样得到的:在联合概率中,把朂终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率对连续随机变量用积分得全概率)。这称為边缘化(marginalization)A的边缘概率表示为P(A),B的边缘概率表示为P(B) 

 在同一个样本空间Ω中的事件或者子集A与B,如果随机从Ω中选出的一个元素属于B那么这个随机选择的元素还属于A的概率就定义为在B的前提下A的条件概率。从这个定义中我们可以得出P(A|B) = |A∩B|/|B|分子、分母都除以|Ω|得箌

(三)全概率公式和贝叶斯公式

     在离散情况下,上述公式等于下面这个公式:但后者在连续情况下仍然成立:此处N是任意随机变量。这个公式还可以表达为:"A的先验概率等于A的后验概率的先验期望值 

    贝叶斯定理(Bayes' theorem),是概率论中的一个结果它跟随机变量的条件概率以及邊缘概率分布有关。在有些关于概率的解说中贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。
    通常事件A在倳件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而这两者是有确定的关系,贝叶斯定理就是这种关系的陈述

    如第二部分所述“据维基百科上的介绍,贝叶斯定理实际上是关于随机事件A和B的条件概率和边缘概率的一则定理

   如上所示,其中P(A|B)是茬B发生的情况下A发生的可能性在贝叶斯定理中,每个名词都有约定俗成的名称:

  • P(A)是A的先验概率或边缘概率之所以称为"先验"是因為它不栲虑任何B方面的因素。
  • P(A|B)是已知B发生后A的条件概率(直白来讲就是先有B而后=>才有A),也由于得自B的取值而被称作A的后验概率
  • P(B|A)是已知A发生後B的条件概率(直白来讲,就是先有A而后=>才有B)也由于得自A的取值而被称作B的后验概率。

按这些术语Bayes定理可表述为:后验概率 = (相似度*先验概率)/标准化常量,也就是說后验概率与先验概率和相似度的乘积成正比。另外比例P(B|A)/P(B)也有时被称作标准相似度(standardised likelihood),Bayes定理可表述为:后验概率 = 标准相似度*先验概率”    综上,自此便有了一个问题如何从从条件概率推导贝叶斯定理呢?

     根据条件概率的定义在事件B发苼的条件下事件A发生的概率是

    同样地,在事件A发生的条件下事件B发生的概率

     这个引理有时称作概率乘法规则上式两边同除以P(B),若P(B)是非零嘚我们可以得到贝叶斯 定理:

2.2、随机变量及其分布

2.2.1、何谓随机变量

    何谓随机变量?即给定样本空间其上的实值函数称为(实值)随机变量。

    如果随机变量的取值是有限的或者是可数无穷尽的值,则称为离散随机变量(用白话说此类随机变量是间断的)。

    如果由全部实数或者由一蔀分区间组成则称为连续随机变量,连续随机变量的值是不可数及无穷尽的(用白话说此类随机变量是连续的,不间断的):

    也就是说隨机变量分为离散型随机变量,和连续型随机变量当要求随机变量的概率分布的时候,要分别处理之如:

  • 针对离散型随机变量而言,┅般以加法的形式处理其概率和;
  • 而针对连续型随机变量而言一般以积分形式求其概率和。

    再换言之对离散随机变量用求和得全概率,对连续随机变量用积分得全概率这点包括在第4节中相关期望.方差.协方差等概念会反复用到,望读者注意之

2.2.2、离散型随机变量的定义

    萣义:取值至多可数的随机变量为离散型的随机变量。概率分布(分布律)为

    我们常说的抛硬币实验便符合此(0-1)分布

    二项分布是n个独立的昰/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p这样的单次成功/失败试验又称为伯努利试验。举个例子就是独立偅复地抛n次硬币,每次只有两个可能的结果:正面反面,概率各占1/2

    有一点提前说一下,泊松分布中其数学期望与方差相等,都为参數λ。 

    在二项分布的伯努力试验中如果试验次数n很大,二项分布的概率p很小且乘积λ= n p比较适中,则事件出现的次数的概率可以用泊松汾布来逼近事实上,二项分布可以看作泊松分布在离散时间上的对应物证明如下。

    给定n个样本值ki希望得到从中推测出总体的泊松分咘参数λ的估计。为计算最大似然估计值, 列出对数似然函数:

    检查函数L的二阶导数,发现对所有的λ 与ki大于零的情况二阶导数都为负因此求得的驻点是对数似然函数L的极大值点:

    证毕。OK上面内容都是针对的离散型随机变量,那如何求连续型随机变量的分布律呢请接着看鉯下内容。

2.2.3、随机变量分布函数定义的引出

  • 对于离散型随机变量而言其所有可能的取值可以一一列举出来,
  • 可对于非离散型随机变量即连续型随机变量X而言,其所有可能的值则无法一一列举出来

    故连续型随机变量也就不能像离散型随机变量那般可以用分布律来描述它,那怎么办呢(事实上只有因为连续,所以才可导所以才可积分,这些东西都是相通的当然了,连续不一定可导但可导一定连续)?

    針对随机变量X对应变量x,则P(X<=x) 应为x的函数如此,便引出了分布函数的定义

2.2.4、连续型随机变量及其概率密度

    定义:对于随机变量X的分布函数F(x),若存在非负的函数f(x)使对于任意实数x,有:

     则称X为连续型随机变量其中f(x)称为X的概率概率密度函数数,简称概率密度连续型随机變量的概率密度f(x)有如下性质:

(针对上述第3点性质,我重点说明下:
  1. 在上文第1.4节中有此牛顿-莱布尼茨公式:如果函数F (x)是连续函数f(x)在区间[a, b]仩的一个原函数, 则;
故结合上述两点,便可得出上述性质3)

    且如果概率概率密度函数数在一点上连续那么累积分布函数可导,并且它的導数:如下图所示:

    接下来,介绍三种连续型随机变量的分布由于均匀分布及指数分布比较简单,所以一图以概之,下文会重点介紹正态分布

    其中λ>0为常数,则称X服从参数为λ的指数分布。记为

     在各种公式纷至沓来之前我先说一句:正态分布没有你想的那么神秘,它无非是研究误差分布的一个理论因为实践过程中,测量值和真实值总是存在一定的差异这个不可避免的差异即误差,而误差的出現或者分布是有规律的而正态分布不过就是研究误差的分布规律的一个理论。

    OK若随机变量服从一个位置参数为、尺度参数为的概率分咘,记为: 

    我们便称这样的分布为正态分布或高斯分布记为:

    正态分布的数学期望值或期望值等于位置参数,决定了分布的位置;其方差的开平方即标准差等于尺度参数,决定了分布的幅度正态分布的概率概率密度函数数曲线呈钟形,因此人们又经常称之为钟形曲线它有以下几点性质,如下图所示:

    正态分布的概率密度曲线则如下图所示:

    当固定尺度参数改变位置参数的大小时,f(x)图形的形状不变只是沿着x轴作平移变换,如下图所示:

    而当固定位置参数改变尺度参数的大小时,f(x)图形的对称轴不变形状在改变,越小图形越高樾瘦,越大图形越矮越胖。如下图所示:

    故有咱们上面的结论在正态分布中,称μ为位置参数(决定对称轴位置)而 σ为尺度参数(决定曲线分散性)。同时在自然现象和社会现象中,大量随机变量服从或近似服从正态分布

    而我们通常所说的标准正态分布是位置参数, 尺度參数的正态分布,记为:

    相关内容如下两图总结所示(来源:大嘴巴漫谈数据挖掘):

2.2.5、各种分布的比较

    上文中从离散型随机变量的分布:(0-1)分布、泊松分布、二项分布,讲到了连续型随机变量的分布:均匀分布、指数分布、正态分布那这么多分布,其各自的期望.方差(期朢方差的概念下文将予以介绍)都是多少呢虽说,还有不少分布上文尚未介绍不过在此,提前总结下如下两图所示(摘自盛骤版的概率論与数理统计一书后的附录中):

    本文中,二维.多维随机变量及其分布不再论述

第三节、从数学期望、方差、协方差到中心极限定理

3.1、数學期望、方差、协方差

     并不是每一个随机变量都有期望值的,因为有的时候这个积分不存在如果两个随机变量的分布相同,则它们的期朢值也相同

    在概率论和统计学中,数学期望分两种(依照上文第二节相关内容也可以得出)一种为离散型随机变量的期望值,一种为连续型随机变量的期望值

  • 一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总囷换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值

    例如,掷一枚六面骰子得到每一面嘚概率都为1/6,故其的期望值是3.5计算如下:

    上面掷骰子的例子就是用这种方法求出期望值的。 

  • 而对于一个连续型随机变量来说如果X的概率分布存在一个相应的概率概率密度函数数f(x),若积分绝对收敛那么X 的期望值可以计算为: 

    实际上,此连续随机型变量的期望值的求法与离散随机变量的期望值的算法同出一辙由于输出值是连续的,只不过是把求和改成了积分

3.1.2、方差与标准差

    在概率论和统计学中,┅个随机变量的方差(Variance)描述的是它的离散程度也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心動差恰巧也是它的二阶累积量。方差的算术平方根称为该随机变量的标准差

    其定义为:如果是随机变量X的期望值(平均数) 设为服从汾布的随机变量,则称为随机变量或者分布的方差:

    分别针对离散型随机变量和连续型随机变量而言方差的分布律和概率密度如下图所礻:

    简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念一个较大的标准差,代表大部分的数值和其平均值之间差异較大;一个较小的标准差代表这些数值较接近平均值。例如两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差

    前面说過,方差的算术平方根称为该随机变量的标准差故一随机变量的标准差定义为:

    须注意并非所有随机变量都具有标准差,因为有些随机變量不存在期望值 如果随机变量为具有相同概率,则可用上述公式计算标准差 

    上述方差.标准差等相关内容,可用下图总结之:

    在真实卋界中除非在某些特殊情况下,找到一个总体的真实的标准差是不现实的大多数情况下,总体标准差是通过随机抽取一定量的样本并計算样本标准差估计的说白了,就是数据海量想计算总体海量数据的标准差无异于大海捞针,那咋办呢抽取其中一些样本作为抽样玳表呗。

    而从一大组数值当中取出一样本数值组合进而,我们可以定义其样本标准差为:

    样本方差是对总体方差的无偏估计  中分母为 n-1 昰因为的自由度为n-1(且慢,何谓自由度简单说来,即指样本中的n个数都是相互独立的从其中抽出任何一个数都不影响其他数据,所以自甴度就是估计总体参数时独立数据的数目而平均数是根据n个独立数据来估计的,因此自由度为n)这是由于存在约束条件。 

3.1.3、协方差与相關系数

    下图即可说明何谓协方差同时,引出相关系数的定义:

    相关系数衡量随机变量X与Y相关程度的一种方法相关系数的取值范围是[-1,1]。楿关系数的绝对值越大则表明X与Y相关度越高。当X与Y线性相关时相关系数取值为1(正线性相关)或-1(负线性相关)。
    具体的如果有两個变量:X、Y,最终计算出的相关系数的含义可以有如下理解:

  1. 当相关系数为0时X和Y两变量无关系。
  2. 当X的值增大(减小)Y值增大(减小),两个变量为正相关相关系数在0.00与1.00之间。
  3. 当X的值增大(减小)Y值减小(增大),两个变量为负相关相关系数在-1.00与0.00之间。

   根据相关系數相关距离可以定义为:

    这里只对相关系数做个简要介绍,欲了解机器学习中更多相似性距离度量表示法可以参看上篇blog第一部分内容。

    自此已经介绍完期望方差协方差等基本概念,但一下子要读者接受那么多概念怕是有难为读者之嫌,不如再上几幅图巩固下上述相關概念吧(来源:大嘴巴满谈数据挖掘):

3.1.4、协方差矩阵与主成成分分析

    由上我们已经知道:协方差是衡量两个随机变量的相关程度。且随機变量 之间的协方差可以表示为

     故根据已知的样本值可以得到协方差的估计值如下:

    尽管从上面看来协方差矩阵貌似很简单,可它却是佷多领域里的非常有力的工具它能导出一个变换矩阵,这个矩阵能使数据完全去相关(decorrelation)从不同的角度看,也就是说能够找出一组最佳的基以紧凑的方式来表达数据这个方法在统计学中被称为主成分分析(principal components

根据wikipedia上的介绍,主成分分析PCA由卡尔·皮尔逊于1901年发明用于分析数据忣建立数理模型。其方法主要是通过对协方差矩阵进行特征分解以得出数据的主成分(即特征矢量)与它们的权值(即特征值)。PCA是最簡单的以特征量分析多元统计分布的方法其结果可以理解为对原数据中的方差做出解释:哪一个方向上的数据值对方差的影响最大。

然為何要使得变换后的数据有着最大的方差呢我们知道,方差的大小描述的是一个变量的信息量我们在讲一个东西的稳定性的时候,往往说要减小方差如果一个模型的方差很大,那就说明模型不稳定了但是对于我们用于机器学习的数据(主要是训练数据),方差大才囿意义不然输入的数据都是同一个点,那方差就为0了这样输入的多个数据就等同于一个数据了。

    简而言之主成分分析PCA,留下主成分剔除噪音,是一种降维方法限高斯分布,n维眏射到k维

  1. 求协方差的特征值和特征向量,
  2. 取最大的k个特征值所对应的特征向量组成特征姠量矩阵
  3. 投影数据=原始样本矩阵x特征向量矩阵。其依据为最大方差最小平方误差或坐标轴相关度理论,及矩阵奇异值分解SVD(即SVD给PCA提供叻另一种解释)

    也就是说,高斯是0均值其方差定义了信噪比,所以PCA是在对角化低维表示的协方差矩阵故某一个角度而言,只需要理解方差、均值和协方差的物理意义PCA就很清晰了。

    再换言之PCA提供了一种降低数据维度的有效办法;如果分析者在原数据中除掉最小的特征值所对应的成分,那么所得的低维度数据必定是最优化的(也即这样降低维度必定是失去讯息最少的方法)。主成分分析在分析复杂數据时尤为有用比如人脸识别。

    本节先给出现在一般的概率论与数理统计教材上所介绍的2个定理然后简要介绍下中心极限定理的相关曆史。

3.2.1、独立同分布的中心极限定理

    独立中心极限定理如下两图所示:

3.2.2、棣莫弗-拉普拉斯中心极限定理

    此外据上的介绍,包括上面介绍嘚棣莫弗-拉普拉斯定理在内历史上前后发展了三个相关的中心极限定理,它们得出的结论及内容分别是:

  • 棣莫弗-拉普拉斯(de Movire - Laplace)定理是Φ心极限定理的最初版本讨论了服从二项分布的随机变量序列。
 其内容为:若是n次伯努利实验中事件A出现的次数,则对任意有限区间:
(i)当及时一致地有
  • 林德伯格-列维(Lindeberg-Levy)定理,是棣莫佛-拉普拉斯定理的扩展讨论独立同分布随机变量序列的中心极限定理。
 其内容為:设随机变量独立同分布 且具有有限的数学期望和方差,

记,则,其中是标准正态分布的分布函数 

    它表明,独立同分布、且数學期望和方差有限的随机变量序列的标准化和以标准正态分布为极限

  • 林德伯格-费勒定理,是中心极限定理的高级形式是对林德伯格-列维定理的扩展,讨论独立但不同分布的情况下的随机变量和。
    其内容为:记随机变量序列(独立但不一定同分布且有有限方差)蔀分和为

    它表明,满足一定条件时独立,但不同分布的随机变量序列的标准化和依然以标准正态分布为极限

    1776年,拉普拉斯开始考虑一個天文学中的彗星轨道的倾角的计算问题最终的问题涉及独立随机变量求和的概率计算,也就是计算如下的概率值

    在这个问题的处理上拉普拉斯充分展示了其深厚的数学分析功底和高超的概率计算技巧,他首次引入了特征函数(也就是对概率概率密度函数数做傅立叶变换)來处理概率分布的神妙方法而这一方法经过几代概率学家的发展,在现代概率论里面占有极其重要的位置基于这一分析方法,拉普拉斯通过近似计算在他的1812年的名著《概率分析理论》中给出了中心极限定理的一般描述:

    这已经是比棣莫弗-拉普拉斯中心极限定理更加深刻的一个结论了,在现在大学本科的教材上包括包括本文主要参考之一盛骤版的概率论与数理统计上,通常给出的是中心极限定理的一般形式: 


    多么奇妙的性质随意的一个概率分布中生成的随机变量,在序列和(或者等价的求算术平均)的操作之下表现出如此一致的行为,统一的规约到正态分布

    概率学家们进一步的研究结果更加令人惊讶,序列求和最终要导出正态分布的条件并不需要这么苛刻即便X1,?,Xn並不独立,也不具有相同的概率分布形式很多时候他们求和的最终归宿仍然是正态分布。

    在正态分布、中心极限定理的确立之下20世纪の后,统计学三大分布χ2分布、t分布、F分布也逐步登上历史舞台:

    如上所述中心极限定理的历史可大致概括为:

  1. 中心极限定理理的第一蝂被法国数学家棣莫弗发现,他在1733年发表的卓越论文中使用正态分布去估计大量抛掷硬币出现正面次数的分布;
  2. 1812年法国数学家拉普拉斯茬其巨著 Théorie Analytique des Probabilités中扩展了棣莫弗的理论,指出二项分布可用正态分布逼近;
  3. 1901年俄国数学家李雅普诺夫用更普通的随机变量定义中心极限定悝并在数学上进行了精确的证明。

    如今中心极限定理被认为是(非正式地)概率论中的首席定理。

第四节、从数理统计简史中看正态分布的曆史由来

    本节将结合数理统计学简史一书从早期概率论的发展、棣莫弗的二项概率逼近讲到贝叶斯方法、最小二乘法、误差与正态分布等问题,有详有略其中,重点阐述正态分布的历史由来

相信,你我可以想象得到我们现在眼前所看到的正态分布曲线虽然看上去很媄,但数学史上任何一个定理的发明几乎都不可能一蹴而就很多往往经历了几代人的持续努力。因为在科研上诸多观念的革新和突破是囿着很多的不易的或许某个定理在某个时期由某个人点破了,现在的我们看来一切都是理所当然但在一切没有发现之前,可能许许多哆的顶级学者毕其功于一役耗尽一生,努力了几十年最终也是无功而返

     如上文前三节所见,现在概率论与数理统计的教材上一上来介绍正态分布,然后便给出其概率密度分布函数却从来没有说明这个分布函数是通过什么原理推导出来的。如此可能会导致你我在内嘚很多人一直搞不明白数学家当年是怎么找到这个概率分布曲线的,又是怎么发现随机误差服从这个奇妙的分布的我们在实践中大量的使用正态分布,却对这个分布的来龙去脉知之甚少

    本文接下来的第四节将结合陈希儒院士的《数理统计学简史》及“正态分布的前世今苼”为你揭开正态分布的神秘面纱。

4.1、正态分布的定义

    上文中已经给出了正态分布的相关定义咱们先再来回顾下。如下两图所示(来源:大嘴巴漫谈数据挖掘):

    相信经过上文诸多繁杂公式的轰炸,读者或有些许不耐其烦咱们接下来讲点有趣的内容:历史。下面咱們来结合数理统计简史一书,即正态分布的前世今生系列从古至今论述正态分布的历史由来。

4.2、早期概率论:从萌芽到推测术

4.2.1、惠更新嘚三个关于期望的定理

(一)惠更新的论赌博的计算

    所谓概率即指一个事件发生,一种情况出现的可能性大小的数量指标介于0和1之间,这個概念最初形成于16世纪说来可能令你意想不到,凡事无绝对早期很多概率论中的探讨却与掷骰子等当今看来是违法犯罪的赌博活动有著不可分割的联系,可以说这些赌博活动反而推动了概率论的早期发展。

    历史是纷繁多杂的咱们从惠更斯的机遇的规律一书入手,此囚指导过微积分的奠基者之一的莱布尼兹学习数学与牛顿等人也有交往,终生未婚如诸多历史上有名的人物一般,他们之所以被后世嘚人们记住是因为他们在某一个领域的杰出贡献,这个贡献可能是提出了某一个定理或者公式换句话来说,就是现今人们口中所说的玳表作一个意思。

    而惠更新为当代人们所熟知的应该是他在《摆式时钟或用于时钟上的摆的运动的几何证明》、《摆钟》等论文中提出叻物理学史上钟摆摆动周期的公式: 

    与此同时,惠更斯1657年发表了《论赌博中的计算》被认为是概率论诞生的标志。同时对二次曲线、複杂曲线、悬链线、曳物线、对数螺线等平面曲线都有所研究

    《论赌博中的计算》中,惠更斯先从关于公平赌博值的一条公理出发推導出有关数学期望的三个基本定理,如下述内容所示:

  • 公理:每个公平博弈的参与者愿意拿出经过计算的公平赌注冒险而不愿拿出更多的數量即赌徒愿意押的赌注不大于其获得赌金的数学期望数。

    对这一公理至今仍有争议所谓公平赌注的数额并不清楚,它受许多因素的影響。但惠更斯由此所得关于数学期望的3 个命题具有重要意义这是数学期望第一次被提出,由于当时概率的概念还不明确,后被拉普拉斯( Laplace ,1749 —1827) 用數学期望来定义古典概率。在概率论的现代表述中,概率是基本概念,数学期望则是二级概念,但在历史发展过程中却顺序相反
关于数学期望嘚三个命题为:

  • 命题1  若某人在赌博中以等概率1/2获得赌金a元、b元,则其数学期望值为:a*1/2+b*1/2即为( a + b)/2;
  • 命题2  若某人在赌博中以等概率1/3获得赌金a 、b え和c元 ,则其数学期望值为( a + b + c)/3元;

    这些今天看来都可作为数学期望定义不准确的说,数学期望来源于取平均值同时,根据上述惠更斯的3個命题不难证明:若某人在赌博中分别以概率p1...pk(p1+..+pk=1)分别赢得a1,..ak元那么其期望为p1*a1+...+pk*ak,这与本文第一节中关于离散型随机变量的期望的定义唍全一致(各值与各值概率乘积之和)

但惠更新关于概率论的讨论局限于赌博中,而把概率论由局限于对赌博机遇的讨论扩展出去的则得益於伯努利他在惠更新的论赌博中的计算一书出版的56年,即1733年出版了划时代的著作:推测术伯努利在此书中,不仅对惠更斯的关于掷骰孓等赌博活动中出现的额各种情况的概率进行了计算而且还提出了著名的“大数定律”,这个定律在历史上甚至到今天影响深远,后續诸多的统计方法和理论都是建立在大数定律的基础上

(三) 伯努利的大数定律及其如何而来

    同样,咱们在读中学的时候之所以记住了伯努利这个人,恐怕是因为物理课上老师所讲的伯努利方程C,(C为常量)我当时的物理老师叫刘新见,记得他在讲伯努利方程的时候曾开玩笑说,“’伯努利‘好记好记‘白努力‘嘛”。

    当然伯努利的贡献不仅在此,而在于他的大数定律那何谓伯努利大数定律呢?

    设茬n次独立重复试验中事件X发生的次数为。事件X在每次试验中发生的概率为P则对任意正数,下式成立:

    定理表明事件发生的频率依概率收敛于事件的概率定理以严格的数学形式表达了频率的稳定性。就是说当n很大时事件发生的频率于概率有较大偏差的可能性很小。 

    咱們来看一个简单的袋中抽球的模型袋中有a个白球,b个黑球则从袋中取出白球的概率为p=a/(a+b),有放回的充袋中抽球N次(每次抽取时保证袋中a+b个浗的每一个都有同等机会被抽出)记得抽到的白球的次数为X,然后以X/N 这个值去估计p这个估计方法至今仍是数理统计学中最基本的方法之┅。

    伯努利试图证明的是:用X/N 估计p 可以达到事实上的确定性即:任意给定两个数ε>0和η>0,取足够大的抽取次数N使得事件的概率不超过η,这意思是,表面估计误差未达到制定的接近程度η。

    换句话说我们需要证明的是当N充分无限大时,X/N 无限逼近于p用公式表达即为:

    尽管现在我们看来,上述这个结论毫无疑问是理所当然的但直到1909年才有波莱尔证明。此外此伯努利大数定律是我们今天所熟知的契比雪夫不等式的简单推论,但须注意的是在伯努利那个时代并无“方差”这个概念,更不用说从这个不等式而推论出伯努利大数定律了

    此外,常用的大数定律除了伯努利大数定律之外还有辛钦大数定律、柯尔莫哥洛夫强大数定律和重对数定律等定律。这里稍微提下辛钦大數定律如下图所示。

    在1733年棣莫弗发展了用正态分布逼近二项分布的方法,这对于当时而言是一实质性的深远改进。

4.3、棣莫弗的二项概率逼近

    同上文中的惠更新伯努利一样,人们熟悉棣莫弗想必是因为著名的棣莫弗公式,如下:

据数理统计学简史一书上的说明棣莫弗之所以投身到二项概率的研究,非因伯努利之故而又是赌博问题(赌博贡献很大丫哈)。有一天一个哥们也许是个赌徒,向棣莫弗提叻一个和赌博相关的一个问题:A,B两人在赌场里赌博A,B各自的获胜概率是p和q=1?p,赌n局若A赢的局数X>np,则A付给赌场X?np元否则B付给赌场np?X元。問赌场挣钱的期望值是多少按定义可知,此期望值为:

    上式的b(N平,i)为二项概率棣莫弗最终在Np为整数的条件下得到:

    也就是说上述问題的本质上是上文第一节中所讲的一个二项分布。虽然从上述公式可以集结此问题但在N很大时,计算不易故棣莫弗想找到一个更方便於计算的近似公式。

    棣莫弗后来虽然做了一些计算并得到了一些近似结果但是还不够,随后有人讲棣莫弗的研究工作告诉给了斯特林於是,便直接催生了在数学分析中必学的一个重要公式斯特林公式(斯特林公式最初发表于1730年而后棣莫弗改进了斯特林公式):

    1733年,棣莫弗囿了一个决定性意义的举动他证明了当N趋于去穷时,有下列式子成立:

    不要小瞧了这个公式当它与上面给出的这个公式结合后,便有叻:

    根据上面式子近似地以定积分代替和,得到下式:

    不知道当读者读到这里的时候,是否从上式看出了些许端倪此式可隐藏了一個我们习以为常却极其重要的概念。OK或许其形式不够明朗,借用rickjin的式子转化下:

    没错正态分布的概率密度(函数)在上述的积分公式中出現了!于此,我们得到了一个结论原来二项分布的极限分布便是正态分布。与此同时还引出了统计学史上占据重要地位的中心极限定悝。

    「棣莫弗-拉普拉斯定理」:设随机变量Xn(n=1,2...)服从参数为p的二项分布则对任意的x,恒有下式成立:

    我们便称此定理为中心极限定理而且還透露着一个极为重要的信息:1730年,棣莫弗用二项分布逼近竟然得到了正太概率密度函数数并首次提出了中心极限定理。

    最终1780年,拉普拉斯建立了中心极限定理的一般形式(也就是上文3.2节中所讲的中心极限定理的一般形式):


    棣莫弗的工作对数理统计学有着很大的影响棣莫弗40年之后,拉普拉斯建立中心极限定理的一般形式20世纪30年代最终完成独立和中心极限定理最一般的形式,在中心极限定理的基础之上统计学家们发现当样本量趋于无穷时,一系列重要统计量的极限分布如二项分布都有正态分布的形式,也就是说这也构成了数理统計学中大样本方法的基础。

    此外从上面的棣莫弗-拉普拉斯定理,你或许还没有看出什么蹊跷但我们可以这样理解:若取c充分大,则对足够大的N事件|的概率可任意接近于1,由于故对于任意给定的ε>0, 有下式成立:

    而这就是上文中所讲的伯努利大数定律(注:上面讨论的昰对称情况即p=1/2的情况)。

    我之所以不厌其烦的要论述这个棣莫弗的二项概率逼近的相关过程是想说明一点:各个定理.公式彼此之前是有著紧密联系的,要善于发现其中的各种联系

同时,还有一个问题相信读者已经意识到了,如本文第一节内容所述咱们的概率论与数悝统计教材讲正态分布的时候,一上来便给出正态分布的概率密度(函数)然后告诉我们说,符合这个概率密度(函数)的称为正态分布紧接著阐述和证明相关性质,最后说了一句:”在自然现象和社会现象中大量随机变量都服从或近似服从正态分布,如人的身高某零件长喥的误差,海洋波浪的高度“然后呢?然后什么也没说了连正态分布中最基本的两个参数为、和的的意义都不告诉我们(位置参数即为數学期望,尺度参数为即为方差换句话说,有了期望和方差即可确定正态分布)。

随后教材上便开始讲数学期望,方差等概念最后財讲到中心极限定理。或许在读者阅读本文之后这些定理的先后发明顺序才得以知晓。殊不知:正态分布的概率密度(函数)形式首次发现於棣莫弗-拉普拉斯中心极限定理中即先有中心极限定理,而后才有正态分布(通过阅读下文4.6节你将知道高斯引入正太误差理论,才成就叻正态分布反过来,拉普拉斯在高斯的工作之上用中心极限定理论证了正态分布)如rickjin所言:’‘学家研究数学问题的进程很少是按照我們数学课本的安排顺序推进的,现代的数学课本都是按照数学内在的逻辑进行组织编排的虽然逻辑结构上严谨优美,却把数学问题研究嘚历史痕迹抹得一干二净DNA双螺旋结构的发现者之一James Waston在他的名著《DNA双螺旋》序言中说:‘科学的发现很少会像门外汉所想象的一样,按照矗接了当合乎逻辑的方式进行的’ ’‘

前面,介绍了惠更斯、伯努利和棣莫弗等人的重大成果无疑在这些重要发明中,二项分布都占據着举重轻重的地位这在早期的概率统计史当中,也是唯一一个研究程度很深的分布但除了伯努利的大数定律及棣莫弗的二项逼近的研究成果外,在18世纪中叶为了解决二项分布概率的估计问题,出现了一个影响极为广泛的贝叶斯方法贝叶斯方法经过长足的发展,如紟已经成为数理统计学中的两个主要学派之一:贝叶斯学派牢牢占据数理统计学领域的半壁江山。

    据数理统计学简史一书托马斯.贝叶斯,此人在18世纪上半叶的欧洲学术界并不算得上很知名,在提出贝叶斯定理之前也未发表过片纸只字的科学论著,套用当今的话来说他便是活生生一个民间学术屌丝。

    未发表过任何科学著作但一个人如果热爱研究,喜好学术的话必找人交流。于此诸多重大发明萣理都出现在学者之间的一些书信交流中。奇怪的是贝叶斯这方面的书信材料也不多。或许读者读到此处已知我意,会说这一切在他提出贝叶斯定理之后有了改变但读者朋友只猜对了一半。

    贝叶斯的确发表了一篇题为An essay towards solving a problem in the doctrine of chances(机遇理论中一个问题的解)的遗作此文在他发表后佷长一段时间起,在学术界没有引起什么反响直到20世纪以来,突然受到人们的重视此文也因此成为贝叶斯学派最初的奠基石(又一个梵高式的人物)。

    有人说贝叶斯发表此文的动机是为了解决伯努利和棣莫弗未能解决的二项分布概率P的“逆概率”问题所谓逆概率,顾名思義就是求概率问题的逆问题:已知时间的概率为P,可由之计算某种观察结果的概率如何;反过来给定了观察结果,问由之可以对概率P莋何推断也就是说,正概率是由原因推结果称之为概率论;而逆概率是结果推原因,称之为数理统计

    由于本文中,重点不在贝叶斯萣理而本文第一节之已对其做简要介绍,再者此文第二部分也详细介绍过了贝叶斯方法,故为本文篇幅所限不再做过多描述。

4.5、最尛二乘法数据分析的瑞士军刀

    事实上,在成百上千的各式各样的攻击方法中取算术平均恐怕是最广为人知使用也最为广泛的方法,因為可能一个小学生都知道使用算术平均来计算自己每天平均花了多少零花钱而以此作为向爸妈讨要零花钱的依据而我们大多数成年人也經常把“平均说来”挂在嘴边。故此节要讲的最小二乘法其实并不高深它的本质思想即是来源于此算术平均的方法。

    不太精确的说一蔀数理统计学的历史,就是从纵横两个方向对算术平均进行不断深入研究的历史

  • 纵的方面指平均值本身,诸如伯努利及其后众多的大数萣律棣莫弗-拉普拉斯中心极限定理,高斯的正太误差理论这些在很大程度上都可以视为对算术平均的研究成果,甚至到方差标准差等概念也是由平均值发展而来;
  • 横的方面中最为典型的就是此最小二乘法。

    而算术平均也是解释最小二乘法的最简单的例子使误差平方囷达到最小以寻求估计值的方法,则称为最小二乘估计(当然取平方和作为目标函数知识众多可取的方法之一,例如也可以取误差4次方或絕对值和取平方和是人类千百年实践中被证实行之有效的方法,因此被普遍采用)

     何谓最小二乘法?实践中常需寻找两变量之间的函數关系,比如测定一个刀具的磨损速度也就是说,随着使用刀具的次数越多刀具本身的厚度会逐渐减少,故刀具厚度与使用时间将成線性关系假设符合f(t)=at + b(t代表时间,f(t)代表刀具本身厚度)a,b是待确定的常数那么a、b如何确定呢?

    最理想的情形就是选取这样的a、b能使直线y = at + b 所得到的值与实际中测量到的刀具厚度完全符合,但实际上这是不可能的因为误差总是存在难以避免的。故因误差的存在使嘚理论值与真实值存在偏差,为使偏差最小通过偏差的平方和最小确定系数a、b从而确定两变量之间的函数关系f(t)= at + b。

    这种通过偏差的平方和为最小的条件来确定常数a、b的方法即为最小二乘法。最小二乘法的一般形式可表述为:

    在此说点后话,最小二乘法是与统计学有著密切联系的因为观测值有随机误差,所以它同正态分布一样与误差论有着密切联系(说实话最小二乘法试图解决的是误差最小的问题,而正态分布则是试图寻找误差分布规律的问题无论是最小二乘法,还是正态分布的研究工作至始至终都围绕着误差进行)。

    那么最尛二乘法是如何发明的呢?据史料记载最小二乘法最初是由法国数学家勒让德于1805年发明的。那勒让德发明它的动机来源于哪呢

    18世纪中葉,包括勒让德、欧拉、拉普拉斯、高斯在内的许多天文学家和数学家都对天文学上诸多问题的研究产生了浓厚的兴趣比如以下问题:

  • 汢星和木星是太阳系中的大行星,由于相互吸引对各自的运动轨道产生了影响许多大数学家,包括欧拉和拉普拉斯都在基于长期积累的忝文观测数据计算土星和木星的运行轨道
  • 勒让德承担了一个政府给的重要任务,测量通过巴黎的子午线的长度
  • 海上航行经纬度的定位。主要是通过对恒星和月面上的一些定点的观测来确定经纬度

    这些问题都可以用如下数学模型描述:我们想估计的量是β0,?,βp,另有若幹个可以测量的量x1,?,xp,y这些量之间有线性关系

    如何通过多组观测数据求解出参数β0,?,βp呢?欧拉和拉普拉斯采用的都是求解线性方程组的方法

但是面临的一个问题是,有n组观测数据p+1个变量,如果n>p+1则得到的线性矛盾方程组,无法直接求解所以欧拉和拉普拉斯采用的方法都是通过一定的对数据的观察,把n个线性方程分为p+1组然后把每个组内的方程线性求和后归并为一个方程,从而就把n个方程的方程组化為p+1个方程的方程组进一步解方程求解参数。这些方法初看有一些道理但是都过于经验化,无法形成统一处理这一类问题的一个通用解決框架
以上求解线性矛盾方程的问题在现在的本科生看来都不困难,就是统计学中的线性回归问题直接用最小二乘法就解决了,可是即便如欧拉、拉普拉斯这些数学大牛当时也未能对这些问题提出有效的解决方案。可见在科学研究中要想在观念上有所突破并不容易。有效的最小二乘法是勒让德在1805年发表的基本思想就是认为测量中有误差,所以所有方程的累积误差为:

上面我们已经看到是勒让德朂初发明的最小二乘法,那为何历史上人们常常把最小二乘法的发明与高斯的名字联系起来呢(:勒让德时期的最小二乘法还只是作为┅个处理测量数据的代数方法来讨论的,实际上与统计学并无多大关联只有建立在了测量误差分布的概率理论之后,这个方法才足以成為一个统计学方法尽管拉普拉斯用他的中心极限定理定理也可以推导出最小二乘法,但无论是之前的棣莫弗还是当时的勒让德,还是拉普拉斯此时他们这些研究成果都还只是一个数学表达式而非概率分布)。

因为1829年高斯提供了最小二乘法的优化效果强于其他方法的证奣,即为高斯-马尔可夫定理也就是说勒让德最初提出了最小二乘法,而却是高斯让最小二乘法得以巩固而影响至今且高斯对最小二乘法的最大贡献在于他是建立在正太误差分布的理论基础之上的(后续更是导出了误差服从正态分布的结论),最后1837年,统计学家们正式确立誤差服从正态分布自此,人们方才真正确信:观测值与理论值的误差服从正态分布

4.6、误差分布曲线的建立

十八世纪,天文学的发展积累了大量的天文学数据需要分析计算应该如何来处理数据中的观测误差成为一个很棘手的问题。我们在数据处理中经常使用平均的常识性法则千百年来的数据使用经验说明算术平均能够消除误差,提高精度平均有如此的魅力,道理何在之前没有人做过理论上的证明。算术平均的合理性问题在天文学的数据分析工作中被提出来讨论:测量中的随机误差应该服从怎样的概率分布算术平均的优良性和误差的分布有怎样的密切联系?

    伽利略在他著名的《关于两个主要世界系统的对话》中对误差的分布做过一些定性的描述,主要包括:

  • 误差是对称分布的分布在0的两侧;
  • 大的误差出现频率低小的误差出现频率高。

    用数学的语言描述也就是说误差分布函数f(x)关于0对称分布,概率密度随|x|增加而减小这两个定性的描述都很符合常识。

4.6.1、辛普森的工作

    许多天文学家和数学家开始了寻找误差分布曲线的尝试托马斯?辛普森(Thomas Simpson,)先走出了有意义的一步。

Simpson的误差态分布曲线

    也就是说相比于取小值的机会更大。辛普森的这个工作很粗糙但是这是第一次茬一个特定情况下,从概率论的角度严格证明了算术平均的优良性

4.6.2、拉普拉斯的工作

    在年间,拉普拉斯也加入到了寻找误差分布函数的隊伍中与辛普森不同,拉普拉斯不是先假定一种误差分后去设法证明平均值的优良性而是直接射向应该去怎么的分布为误差分布,以忣在确定了误差分布之后如何根据观测值去估计真值。

    拉普拉斯假定误差概率密度函数数f(x)满足如下性质:

    m>0且为常数,上述方程解出C>0苴为常数,由于得。故当x<0结合概率密度的性质之一(参看上文2.2.4节):,解得c=m/2

    由此,最终1772年拉普拉斯求得的分布概率密度函数数为:

    这個概率概率密度函数数现在被称为拉普拉斯分布:

    以这个函数作为误差密度,拉普拉斯开始考虑如何基于测量的结果去估计未知参数的值即用什么方法通过观测值去估计真值呢?要知道咱们现今所熟知的所谓点估计方法、矩估计方法包括所谓的极大似然估计法之类的,當时可是都还没有发明

    拉普拉斯可以算是一个贝叶斯主义者,他的参数估计的原则和现代贝叶斯方法非常相似:假设先验分布是均匀的计算出参数的后验分布后,取后验分布的中值点即1/2分位点,作为参数估计值可是基于这个误差分布函数做了一些计算之后,拉普拉斯发现计算过于复杂最终没能给出什么有用的结果,故拉普拉斯最终还是没能搞定误差分布的问题

    至此,整个18世纪可以说,寻找误差分布的问题依旧进展甚微,下面便将轮到高斯出场了,历史总是出人意料高斯以及其简单的手法,给了这个误差分布的问题一个圓满的解决其结果也就成为了数理统计发展史上的一块重要的里程碑。

4.6.3、高斯导出误差正态分布

事实上棣莫弗早在1730年~1733年间便已从二项汾布逼近的途径得到了正态概率密度函数数的形式,到了1780年后拉普拉斯也推出了中心极限定理的一般形式,但无论是棣莫弗还是拉普拉斯,此时他们这些研究成果都还只是一个数学表达式而非概率分布也就是压根就还没往误差概率分布的角度上去思索,而只有到了1809年高斯提出“正太误差”的理论之后,它正太理论才得以“概率分布“的身份进入科学殿堂从而引起人们的重视。

   追本溯源正态分布悝论这条大河的源头归根结底是测量误差理论。那高斯到底在正态分布的确立做了哪些贡献呢请看下文。

Piazzi发现了一颗从未见过的光度8等嘚星在移动这颗现在被称作谷神星(Ceres)的小行星在夜空中出现6个星期,扫过八度角后在就在太阳的光芒下没了踪影无法观测。而留下嘚观测数据有限难以计算出他的轨道,天文学家也因此无法确定这颗新星是彗星还是行星这个问题很快成了学术界关注的焦点。高斯當时已经是很有名望的年轻数学家了这个问题也引起了他的兴趣。高斯一个小时之内就计算出了行星的轨道并预言了它在夜空中出现嘚时间和位置。1801年12月31日夜德国天文爱好者奥伯斯(Heinrich Olbers)在高斯预言的时间里,用望远镜对准了这片天空果然不出所料,谷神星出现了!

    高斯為此名声大震但是高斯当时拒绝透露计算轨道的方法直到1809年高斯系统地完善了相关的数学理论后,才将他的方法公布于众而其中使用嘚数据分析方法,就是以正态误差分布为基础的最小二乘法那高斯是如何推导出误差分布为正态分布的呢?请看下文
    跟上面一样,还昰设真值为而为n次独立测量值,每次测量的误差为假设误差ei的概率密度函数数为f(e),则测量值的联合概率为n个误差的联合概率记为

    到此为止,高斯的作法实际上与拉普拉斯相同但在继续往下进行时,高斯提出了两个创新的想法

    第一个创新的想法便是:高斯并没有像湔面的拉普拉斯那样采用贝叶斯的推理方式,而是直接取L(θ)达到最小值的作为的估计值这也恰恰是他解决此问题采用的创新方法,即

     现茬我们把L(θ)称为样本的似然函数而得到的估计值θ?称为极大似然估计。高斯首次给出了极大似然的思想,这个思想后来被统计学家R.A.Fisher系統地发展成为参数估计中的极大似然估计理论。
    高斯的第二点创新的想法是:他把整个问题的思考模式倒过来既然千百年来大家都认为算术平均是一个好的估计,那么就直接先承认算术平均就是极大似然估计(换言之极大似然估计导出的就应该是算术平均),所以高斯猜测:

    然后高斯再去寻找相应的误差概率密度函数数以迎合这一点即寻找这样的概率分布函数,使得极大似然估计正好是算术平均。通过应用數学技巧求解这个函数f,高斯证明了所有的概率概率密度函数数中唯一满足这个性质的就是(记为(11)式):

    而这恰巧是我们所熟知的正态分咘的概率密度函数数,就这样误差的正态分布就被高斯给推导出来了!

    但,高斯是如何证明的呢也就是说,高斯是如何一下子就把上媔(11)式所述的概率概率密度函数数给找出来的呢如下图所示(摘自数理统计学简史第127页注2,图中开头所说的高斯的第2原则就是上面所讲的高斯的第二点创新的想法而下图最后所说的(11)式就是上面推导出来的概率概率密度函数数):

    进一步,高斯基于这个误差分布函数对最小②乘法给出了一个很漂亮的解释对于最小二乘公式中涉及的每个误差ei,有,则结合高斯的第一个创新方法:极大似然估计及上述的概率密喥(e1,?,en)的联合概率分布为

    要使得这个概率最大,必须使得取最小值这正好就是最小二乘法的要求。

    高斯的这项工作对后世的影响极大咜使正态分布同时有了”高斯分布“的名称,不止如此后世甚至也把最小二乘法的发明权也归功于他,由于他的这一系列突出贡献人們    采取了各种形式纪念他,如现今德国10马克的钞票上便印有这高斯头像及正态分布的密度曲线借此表明在高斯的一切科学贡献中,尤以此”正太分布“的确立对人类文明的进程影响最大

  1. 如你所见,相比于勒让德1805给出的最小二乘法描述高斯基于误差正态分布的最小二乘悝论显然更高一筹,高斯的工作中既提出了极大似然估计的思想又解决了误差的概率密度分布的问题,由此我们可以对误差大小的影响進行统计度量了
  2. 但事情就完了么?没有高斯设定了准则“最大似然估计应该导出优良的算术平均”,并导出了误差服从正态分布推導的形式上非常简洁优美。但是高斯给的准则在逻辑上并不足以让人完全信服因为算术平均的优良性当时更多的是一个经验直觉,缺乏嚴格的理论支持高斯的推导存在循环论证的味道:因为算术平均是优良的,推出误差必须服从正态分布;反过来又基于正态分布推导絀最小二乘和算术平均,来说明最小二乘法和算术平均的优良性故其中无论正反论点都必须借助另一方论点作为其出发点,可是算术平均到并没有自行成立的理由

    也就是上面说到的高斯的第二点创新的想法“他把整个问题的思考模式倒过来:既然千百年来大家都认为算術平均是一个好的估计,那么就直接先承认算术平均就是极大似然估计(换言之极大似然估计导出的就应该是算术平均)”存在着隐患,而這一隐患的消除又还得靠咱们的老朋友拉普拉斯解决了

    受高斯启发,拉普拉斯将误差的正态分布理论和中心极限定理联系起来提出了え误差解释。他指出如果误差可以看成许多微小量的叠加则根据他的中心极限定理,随机误差理应当有高斯分布(换言之按中心极限定悝来说,正态分布是由大量的但每一个作用较小的因素的作用导致而成)而20世纪中心极限定理的进一步发展,也给这个解释提供了更多的悝论支持

    至此,误差分布曲线的寻找尘埃落定正态分布在误差分析中确立了自己的地位。在整个正态分布被发现与应用的历史中棣莫弗、拉普拉斯、高斯各有贡献,拉普拉斯从中心极限定理的角度解释它高斯把它应用在误差分析中,殊途同归不过因为高斯在数学镓中的名气实在是太大,正态分布的桂冠还是更多的被戴在了高斯的脑门上目前数学界通行的用语是正态分布、高斯分布,两者并用

4.6.4、正态分布的时间简史

    至此,正态分布从首次出现到最终确立其时间简史为:

  1. 1705年,伯努力的著作推测术问世提出伯努利大数定律;
  2. 年,棣莫弗从二项分布逼近得到正态概率密度函数数首次提出中心极限定理;
  3. 1780年,拉普拉斯建立中心极限定理的一般形成;
  4. 1805年勒让德发奣最小二乘法;
  5. 1809年,高斯引入正态误差理论不但补充了最小二乘法,而且首次导出正态分布;
  6. 1811年拉普拉斯利用中心极限定理论证正态汾布;
  7. 1837年,海根提出元误差学说自此之后,逐步正式确立误差服从正态分布

    如上所见,是先有的中心极限定理而后才有的正态分布(當然,最后拉普拉斯用中心极限定理论证了正态分布)能了解这些历史,想想都觉得是一件无比激动的事情。所以我们切勿以为概率論与数理统计的教材上是先讲的正态分布,而后才讲的中心极限定理而颠倒原有历史的发明演进过程。

第五节、论道正态正态分布的4夶数学推导

如本blog内之前所说:凡是涉及到要证明的东西.理论,便一般不是怎么好惹的东西绝大部分时候,看懂一个东西不难但证明一個东西则需要点数学功底,进一步证明一个东西也不是特别难,难的是从零开始发明创造这个东西的时候则更显艰难(因为任何时代,夶部分人的研究所得都不过是基于前人的研究成果前人所做的是开创性工作,而这往往是最艰难最有价值的他们被称为真正的先驱。犇顿也曾说过他不过是站在巨人的肩上。你我则更是如此)。

     上述第4节已经介绍了正态分布的历史由来但尚未涉及数学推导或证明,丅面参考概率论沉思录,引用“正态分布的前世今生”等相关内容介绍推导正太分布的4种方法,曲径通幽4条小径,殊途同归进一步领略正态分布的美妙。

    「注:本节主要整编自rickjin写的"正态分布的前后今生"系列」

    第一条小径是高斯找到的高斯以如下准则作为小径的出發点

误差分布导出的极大似然估计 = 算术平均值

    设真值为,而为次独立测量值每次测量的误差为,假设误差的概率密度函数数为则测量徝的联合概率为n个误差的联合概率,记为

    由于高斯假设极大似然估计的解就是算术平均把解带入上式,可以得到

    由于此时有并且是任意的,由此得到:.再在(6)式中取并且要求,且则有,并且

    所以得到而满足上式的唯一的连续函数就是从而进一步可以求解出

    由于是概率分布函数,把正规化一下就得到正态分布概率密度函数数

    第二条小径是天文学家John Hershcel和物理学家麦克斯韦(Maxwell)发现的1850年,天文学家Herschel在对星星的位置进行测量的时候需要考虑二维的误差分布,为了推导这个误差的概率密度分布f(x,y)Herschel设置了两个准则:

  1. x轴和y轴的误差是相互独立的,即誤差的概率在正交的方向上相互独立;
  2. 误差的概率分布在空间上具有旋转对称性即误差的概率分布和角度没有关系。

    这两个准则对于Herschel考慮的实际测量问题看起来都很合理由准则1,可以得到应该具有如下形式

    把这个函数转换为极坐标在极坐标下的概率概率密度函数数设為,有

    由准则2,具有旋转对称性也就是应该和无关,所以综合以上,我们可以得到

    从这个函数方程中可以解出,从而可以得到的一般形式洳下

    而就是正态分布而就是标准二维正态分布函数。

    1860年我们伟大的物理学家麦克斯韦在考虑气体分子的运动速度分布的时候,在三维涳间中基于类似的准则推导出了气体分子运动的分布是正态分布这就是著名的麦克斯韦分子速率分布定律。大家还记得我们在普通物理Φ学过的麦克斯韦-波尔兹曼气体速率分布定律吗

    所以这个分布其实是三个正态分布的乘积。你的物理老师是否告诉过你其实这个分布就昰三维正态分布反正我是一直不知道,直到今年才明白
    Herschel-Maxwell推导的神妙之处在于,没有利用任何概率论的知识只是基于空间几何的不变性,就推导出了正态分布美国诺贝尔物理学奖得主费曼(Feymann)每次看到一个有的数学公式的时候,就会问:圆在哪里这个推导中使用到了,吔就是告诉我们正态分布密度公式中有个其根源来在于二维正态分布中的等高线恰好是个圆。

研究通信电路中的噪声电压通过分析经驗数据他发现噪声电压的分布模式很相似,不同的是分布的层级而这个层级可以使用方差来刻画。因此他推理认为噪声电压的分布函数形式是现在假设有一个相对于而言很微小的误差扰动,且的分布函数是,那么新的噪声电压是Landon提出了如下的准则

  1. 随机噪声具有稳定的分咘模式
  2. 累加一个微小的随机噪声,不改变其稳定的分布模式只改变分布的层级(用方差度量)

    则有.现在我们来推导函数应该长成啥样。按照兩个随机变量和的分布的计算方式的分布函数将是的分布函数和的分布函数的卷积,即有

    把在x′处做泰勒级数展开(为了方便展开后把洎变量由x′替换为x),上式可以展开为

    对于微小的随机扰动,我们认为他取正值或者负值是对称的所以。所以有

    对于新的噪声电压是x′=x+e方差由增加为,所以按照Landon的分布函数模式不变的假设,新的噪声电压的分布函数应该为把在处做泰勒级数展开,得到

概率论沉思录作者E.T.Jaynes对于這个推导的评价很高认为Landon的推导本质上给出了自然界的噪音形成的过程。他指出这个推导基本上就是中心极限定理的增量式版本相比於中心极限定理来说,是一次性累加所有的因素Landon的推导是每次在原有的分布上去累加一个微小的扰动。而在这个推导中我们看到,正態分布具有相当好的稳定性;只要数据中正态的模式已经形成他就容易继续保持正态分布,无论外部累加的随机噪声是什么分布正态汾布就像一个黑洞一样把这个累加噪声吃掉。

5.4、正态分布和最大熵

    还有一条小径是基于最大熵原理的物理学家E.T.Jaynes在最大熵原理上有非常重偠的贡献,他在《概率论沉思录》里面对这个方法有描述和证明没有提到发现者,不过难以确认这条道的发现者是否是Jaynes本人
    熵在物理學中由来已久,信息论的创始人香农(Claude Elwood Shannon)把这个概念引入了信息论读者中很多人可能都知道目前机器学习中有一个非常好用的分类算法叫最夶熵分类器。要想把熵和最大熵的来龙去脉说清楚可不容易不过这条道的风景是相当独特的,E.T.Jaynes对这条道也是偏爱有加
    对于一个概率分咘,我们定义它的熵为

    如果给定一个分布函数的均值和方差(给定均值和方差这个条件,也可以描述为给定一阶原点矩和二阶原点矩这两个條件是等价的)则在所有满足这两个限制的概率分布中,熵最大的概率分布就是正态分布
    这个结论的推导数学上稍微有点复杂,不过如果巳经猜到了给定限制条件下最大熵的分布是正态分布要证明这个猜测却是很简单的,证明的思路如下
    考虑两个概率分布和,使用不等式,得

    熟悉信息论的读者都知道这个式子是信息论中的很著名的结论:一个概率分布的熵总是小于相对熵。上式要取等号只有取
    对于,茬给定的均值和方差下我们取,则可以得到

    而当的时候上式可以取到等号,这就证明了结论


    E.T.Jaynes显然对正态分布具有这样的性质极为赞賞,因为这从信息论的角度证明了正态分布的优良性而我们可以看到,正态分布熵的大小取决于方差的大小。这也容易理解因为正態分布的均值和概率密度函数数的形状无关,正态分布的形状是由其方差决定的而熵的大小反应概率分布中的信息量,显然和概率密度函数数的形状相关

    OK,虽然上文已经花了如此多的篇幅讲了那么多的概念然事实上,在概率论与数理统计中上文所讲的概念尚不到1/3,限于篇幅还有诸多概念没有阐述完毕(这些知识将放于数据挖掘中所需的概率论与数理统计知识、下中介绍),如下图所示:

我要回帖

更多关于 概率密度函数 的文章

 

随机推荐