紫外吸收光谱制样要求

在紫外光谱中,波长单位用nm(纳米)表示。紫外光的波长範围是10~380 nm,它分为两个区段。波长在10~200 nm称为远紫外区,这种波长能够被空气中的氮、氧、二氧化碳和水所吸收,因此只能在真空中进行研究工作,故这个区域的吸收光谱称真空紫外,由于技术要求很高,目前在有机化学中用途不大。波长在200~380 nm称为近紫外区,一般的紫外光谱是指这一区域的吸收光谱。波长在400~750 nm範围的称为可见光谱。常用的分光光度计一般包括紫外及可见两部分,波长在200~800 nm(或200~1000 nm)。

分子内部的运动有转动、振动和电子运动,相应状态的能量(状态的本徵值)是量子化的,因此分子具有转动能级、振动能级和电子能级。通常,分子处于低能量的基态,从外界吸收能量后,能引起分子能级的跃迁。电子能级的跃迁所需能量最大,大致在1~20 eV(电子伏特)之间。根据量子理论,相邻能级间的能量差ΔE、电磁辐射的频率ν、波长λ符合下面的关係式

许多有机分子中的价电子跃迁,须吸收波长在200~1000 nm範围内的光,恰好落在紫外-可见光区域。因此,紫外吸收光谱是由于分子中价电子的跃迁而产生的,也可以称它为电子光谱。

有机化合物分子中主要有三种电子:形成单键的σ电子、形成双键的π电子、未成键的孤对电子,也称n电子。基态时σ电子和π电子分别处在σ成键轨道和π成键轨道上,n电子处于非键轨道上。仅从能量的角度看,处于低能态的电子吸收合适的能量后,都可以跃迁到任一个较高能级的反键轨道上。跃迁的情况如下图所示:

上图中虚线下的数字是跃迁时吸收能量的大小顺序,该顺序也可以表示为:

各种电子跃迁的相对能量

即n→π*的跃迁吸收能量最小。实际上,对于一个非共轭体系来讲,所有这些可能的跃迁中,只有n→π*的跃迁的能量足够小,相应的吸收光波长在200~800 nm範围内,即落在近紫外-可见光区。其它的跃迁能量都太大,它们的吸收光波长均在200 nm以下,无法观察到紫外光谱。但对于共轭体系的跃迁,它们的吸收光可以落在近紫外区。

根据上图,可以认为:烷烃只有σ键,只能发生σ→σ*的跃迁。含有重键如C=C,C≡C,C=O,C=N等的化合物有σ键和π键,有可能发生σ→σ*,σ→π*,π→π*,π→σ*的跃迁。分子中含有氧、卤素等原子时,因为它们含有n电子,还可能发生n→π*、n→σ*的跃迁。

一个允许的跃迁不仅要考虑能量的因素,还要符合动量守恆(跃迁过程中光量子的能量不转变成振动的动能)、自旋动量守恆(电子在跃迁过程中不发生自旋翻转),此外,还要受轨道对称件的制约。即使是允许的跃迁,它们的跃迁机率也是不相等的。有机分子最常见的跃迁是σ→σ*,π→π*,n→σ*,n→π*的跃迁。

电子的跃迁可以分成三种类型:基态成键轨道上的电子跃迁到激发态的反键轨道称为N→V跃迁,如σ→σ*,π→π*的跃迁。杂原子的孤对电子向反键轨道的跃迁称为N→Q跃迁,如n→σ*,n→π*的跃迁。还有一种N→R跃迁,这是σ键电子逐步激发到各个高能级轨道上,最后变成分子离子的跃迁,发生在高真空紫外的远端。

右图是乙酸苯酯的紫外光谱图。

紫外光谱图提供两个重要的数据:吸收峰的位置和吸收光谱的吸收强度。从图中可以看出,化合物对电磁辐射的吸收性质是通过一条吸收曲线来描述的。图中以波长(单位nm)为横坐标,它指示了吸收峰的位置在260 nm处。纵坐标指示了该吸收峰的吸收强度,吸光度为0.8。

吸收光谱的吸收强度是用Lambert(朗伯)—Beer(比尔)定律来描述的,这个定律可以用下面的公式来表示:

式中A称为吸光度(absorbance)。I0是入射光的强度,I是透过光的强度,T=I/I0为透射比(transmiπance),又称为透光率或透过率,用百分数表示。l是光在溶液中经过的距离(一般为吸收池的长度)。c是吸收溶液的浓度。κ=A/(cl),称为吸收係数(absorptivity)。若c以mol/L为单位,l以cm为单位,则κ称为摩尔消光係数或摩尔吸收係数,单位为c㎡·mol(通常可省略)。

A,T,(1-T)(吸收率),κ,lgκ都能作为紫外光谱图的纵坐标,但最常用的是κ,lgκ。上图是以吸光度A为纵坐标的紫外光谱图,下面四幅图是以T,1-T,κ,lgκ为纵坐标的紫外光谱图。由图可知,透过率与吸收率正好相反,如吸收率为20%,透过率恰好为80%。

最大吸收时的波长(λmax)为紫外的吸收峰,在以吸光度、κ,lgκ、吸收率为纵坐标的谱图中,λmax处于吸收曲线的最高峰顶,而在以透过率为纵坐标的谱图中,λmax处于曲线的最低点。紫外吸收的强度通常都用最大吸收峰的κ值即κmax来衡量。在多数文献报告中,并不绘製出紫外光谱图,只是报导化合物最大吸收峰的波长及与之相应的摩尔消光係数。例如CH3I的紫外吸收数据为λmax 258 nm(365),这表示吸收峰的波长为258 nm,相应的摩尔消光係数为365。

紫外光谱的测定大都是在溶液中进行的,绘製出的吸收带大都是宽频,这是 因为分子振动能级的能级差为0.05~1 eV,转动能级的能差小于0.05 eV,都远远低于电子能级的能差,因此当电子能级改变时,振动能级和转动能级也不可避免地会有变化,即电子光谱中不但包括电子跃迁产生的谱线,也有振动谱线和转动谱线,解析度不高的仪器测出的谱图,由于各种谱线密集在一起,往往只看到一个较宽的吸收带。若紫外光谱在惰性溶剂的稀溶液或气态中测定,则图谱的吸收峰上因振动吸收而会表现出锯齿状精细结构。降低温度可以减少振动和转动对吸收带的贡献, 因此有时降温可以使吸收带呈现某种单峰式的电子跃迁。溶剂的极性对吸收带的形状也有影响,通常的规律是溶剂从非极性变到极性时,精细结构逐渐消失,图谱趋向平滑。

饱和烃分子是只有C—C键与C—H键的分子,只能发生σ→σ*跃迁,由于σ电子不易激发,故跃迁需要的能量较大,即必须在波长较短的辐射照射下才能发生。如CH4的σ→σ*跃迁在125 nm,乙烷的σ→σ*跃迁在135 nm,其它饱和烃的吸收一般波长在150 nm左右,均在远紫外区。

如果饱和烃中的氢被氧、氮、卤素等原子或基团取代,这些原子中的n轨道的电子可以发生n→σ*跃迁。见下图。

下表列举了一些能进行跃迁的化合物。

从上表可以看出,C—O(醇、醚),C-Cl等基团的n→σ*跃迁,吸收光的波长小于200 nm,在真空紫外,而C一Br,C一I,C-NH2等基团的n→σ*跃迁,吸收光的波长大于200 nm,可以在近紫外区看到不强的吸收。这些化合物在吸收光谱上的差别,主要是由于原子的电负性不同,原子的电负性强,对电子控制牢,激发电子需要的能量大,吸收光的波长短;反之,原子的电负性较弱,对电子控制不牢,激发电子需要的能量较小,可以在近紫外区出现吸收。此外,分子的可极化性对其吸收光的波长也有一定的影响。可极化性大的,吸收光的波长也较长,n→σ*跃迁的κ值一般在几百以下。

由于饱和烃、醇、醚等在近紫外区不产生吸收,一般用紫外-可见分光光度计无法测出,因此在紫外光谱中常用作溶剂。

C=C双键可以发生π→π*跃迁,由于原子核对π电子的控制不如对σ电子牢,跃迁所需的能量较σ电子小。所以→π*跃迁κ值较大,在5000~100000左右,但是只有一个C=C双键的跃迁出现在170~200 nm处,在真空紫外吸收,一般的分光光度计不能观察到。例如乙烯的π→π*跃迁,λmax= 185 nm(κ=10000),在近紫外区不能检出,同样C≡C与C≡N等π→π*跃迁的吸收亦小于200 nm。

如果分子中存在两个或两个以上的双键(包括三键)形成的共轭体系,π电子处在离域的分子轨道上,与定域轨道相比,占有电子的成键轨道的最高能级与未占有电子的反键轨道的最低能级的能差减小,使π→π*跃迁所需的能量减少,因此吸收向长波方向位移。消光係数也随之增大,例如1,3-丁二烯分子中两对π电子填满π1与π2成键轨道,π3与T4反键轨道是空的,当电子吸收了所需的光能后便会发生从π2到π3的跃迁,见下图。

由图可知,在这种分子中,电子可以有多种跃迁,但是在有机分子中比较重要的是能量最低的跃迁,因为这种跃迁在近紫外区吸收,1,3-丁二烯的能量最低跃迁是π2→π3跃迁,其λmax=217 nm(κ= 21000),而其它跃迁能阶相差较高,需要能量较大,在真空紫外吸收。随着共轭体系逐渐增长,跃迁能阶的能差逐渐变小,吸收愈向长波方向位移,由近紫外可以转向可见光吸收(见下表)。

因为共扼体系吸收带的波长在近紫外,因此在紫外光谱的套用上,占有重要地位,对于判断分子的结构,非常有用。

有些基团存在双键和孤电子对,如C=O,N=O,C=S,N=N等,这些基团除了可以进行π→π*跃迁,有较强的吸收外,还可进行n→π*跃迁,这种跃迁所需能量较少,可以在近紫外或可见光区有不太强的吸收,κ值一般在十到几百。例如脂肪醛中C=O的π→π*跃迁吸收约210 nm,n→π*跃迁吸收约290 nm,见下左图。

如果这些基团与C=C共轭,形成含有杂原子的共轭体系,与C=C—C=C共轭类似,可以形成新的成键轨道与反键轨道,使与π→π*与n→π*的跃迁能级的能差减小,吸收向长波方向位移,例如2-丁烯醛的π2→π3和n→π3跃迁与脂肪醛相应的跃迁比较,吸收均向长波位移,见下右图。

下表列举了常见的n→π*跃迁化合物的吸收带以及不同类型共轭分子的吸收带。

从上表可以看出n→π*跃迁的值很小,一般是由十到几百κ值小的原因,可以从羰基的轨道结构得到解释(见右图)。从图中羰基的轨道图中看到,n轨道的电子与π电子集中在不同的空间区域,因此,儘管n→π*跃迁需要的能量较低,由于在不同的空间,故n轨道的电子跃迁到π轨道的可能性是比较小的,产生跃迁的机率不大。由于κ值是由电子跃迁的机率决定的,所以n→π*跃迁的κ值很小,这种跃迁称为禁忌跃迁,与n→π*跃迁比较κ值要小2~3个数量级。根据n→π*跃迁显示弱的吸收带,同时根据吸收位置,可以预示某些基团的存在,在结构测定中相当有用。

芳香族化合物都具有环状的共轭体系,一般来讲,它们都有三个吸收带。芳香族化合物中最重要的是苯,苯的带Ⅰλmax=184 nm(κ=47000),在真空紫外。带Ⅱλmax=204 nm(κ=6900),带Ⅲλmax=255 nm(κ=230)。下图所示为苯的带Ⅲ在255 nm处的吸收。因为电子跃迁时伴随着振动能级的跃迁,因此将带Ⅲ弱的吸收分裂成一系列的小峰,吸收最高处为一系列尖峰的中心,波长为255 nm,κ值为230,中间间隔为振动吸收,这种特徵可用于鉴别芳香化合物。

苯衍生物的带Ⅱ、带Ⅲ亦均在近紫外吸收,下表是苯衍生物的吸收带。

注:以上用水、甲醇或乙醇为溶剂。

有些基团的紫外吸收光谱与pH关係很大, 例如苯胺在酸性条件下由于氮上孤电子对与质子结合,它的吸收光谱与苯环类似;如酚在酸性与中性条件下的吸收光谱与硷性时不一样。

凡是能在某一段光波内产生吸收的基团,就称为这一段波长的生色基(chromophore)。紫外光谱的生色基是:碳碳共轭结构、含有杂原子的共轭结构、能进行n→π*跃迁的基团、能进行n→σ*跃迁并在近紫外区能吸收的原子或基团。常见的生色团列于下表。

*孤立的C=C,C≡C的π→π*跃迁的吸收峰都在远紫外区,但当分子中再引入一个与之共轭的不饱和键时,吸收就进人到紫外区,所以该表将C=C,C≡C也算作生色团。

具有非键电子的原子连在双键或共轭体系上,形成非键电子与π电子的共轭,即P-π共轭,使电子活动範围增大,吸收向长波方向位移,并使颜色加深。这种效应,称助色效应,这种基团称为助色基(anxochmme),如一OH,一OR,一NH2,一NR2,一SR,卤素等均是助色基。下表为乙烯体系、不饱和羰基体系及苯环体系被助色基取代后波长的增值。

由于取代基或溶剂的影响,使最大吸收峰向长波方向移动的现象称为红移(red shift)现象。由于取代基或溶剂的影响,使最大吸收峰向短波方向移动的现象称为蓝(紫)移(blue shift)现象。波长与电子跃迁前后所占据轨道的能量差成反比,因此,能引起能量差变化的因素如共轭效应、超共轭效应、空间位阻效应及溶剂效应等都可以产生红移现象或紫移现象。

将烷基引入共轭体系时,烷基中的C一H键的电子可以与共轭体系的π电子重叠,产生超共轭效应,其结果使电子的活动範围增大,吸收向长波方向位移。超共轭效应增长波长的作用不是很大,但对化合物结构的鉴定,还是有用的。下表列举的数据表明了在共轭体系上的烷基对吸收波长的影响。

由于溶剂与溶质分子间形成氢键、偶极极化等的影响,也可以使溶质吸收波长发生位移。如π→π*跃迁,激发态比基态的极性强,因此极性溶剂对激发态的作用比基态强,可使激发态的能量降低较多,以使基态与激发态之间的能级的能差减小,吸收向长波位移,即发生红移现象。又如n→π*跃迁,在质子溶剂中,溶质氮或氧上的n轨道中的电子可以被质子溶剂质子化,质子化后的杂原子增加了吸电子的作用,吸引n轨道的电子更靠近核而能量降低,故基态分子的n轨道能量降低,n→π*跃迁时吸收的能量较前为大,这使吸收向短波位移,即发生紫移现象,见下图。

溶剂对溶质n→π*跃迁能量的影响

由此可见,溶剂对基态、激发态与n态的作用是不同的,对吸收波长的影响亦不同,极性溶剂比非极性溶剂的影响大。因此在记录吸收波长时,需要写明所用的溶剂。紫外中常用的溶剂为水、甲醇,乙醇、己烷或环己烷、醚等。溶剂木身也有一定的吸收带,虽然其κ值小,但浓度一般比待测物的浓度大好几个数量级,因此,如果与溶质的吸收带相同或相近,将会有干扰,选择溶剂时,要予以注意。

使κ值增加的效应称为增色效应(hyperchromic effect)。使κ值减弱的效应称为减色效应(hypochromic cHect)。κ值与电子跃迁前后所占据轨道的能差及它们相互的位置有关,轨道间能差小,处于共平面时,电子的跃迁机率较大,κ值也就较大。在分子中,相邻的生色基由于空间位阻效应而不能很好的 共平面,对化合物的吸收波长及κ值均有影响。例如二苯乙烯由于存在双键,具有顺反异构体,反式异构体的两个苯环可以与烯的键共平面,形成一个大的共轭体系,它的紫外吸收峰在λmax=290 nm(k=27,000);而顺式异构体两个苯环在双键的一边,由于空间位阻不能很好地共平面,共轭作用不如反式的有效,它的紫外吸收λmax=280 nm(κ=14,000)。这种由于空间位阻使共轭体系不能很好共平面而引起的吸收波长与κ值的变化,在紫外吸收光谱中是一种普遍现象,在结构测定中十分有用。

紫外光谱在破析一系列维生素、抗菌素及天然产物的化学结构曾起过重要作用,如维生素A1维生素A2维生素B12维生素B1青霉素链霉素土霉素萤火虫尾部的发光物质等。

例如利血平具有两个共轭体系结构,水解得到利血平酸和3,4,5-三甲氧基苯甲酸。利血平酸经LiAlH4还原为利血平醇,其光谱与2,3-二甲基-6-甲氧基吲哚的紫外光谱相似。将合成的利血平醇与3,4,5-三甲氧基苯甲酸的紫外光谱叠加起来所得谱线与利血平的吸收曲线基本吻合,进一步由合成最后确定利血平的结构。

光致变色现象是指在光的照射下颜色发生可逆变化的现象,可通过紫外光谱进行测试研究。如螺恶嗪类化合物A的环己烷溶液是没有颜色,但在365nm连续的紫外光的照射下,溶液变成蓝色,在可见区域产生吸收。随照射时间的延长,吸收峰的强度逐渐变大,直至不再变化为止,将化合物的溶液放在暗处,其在可见光区域的吸收会逐渐下降。

光致变色材料作为一类新型功能材料,有着十分广阔的套用前景。例如可以作为光信息存储材料、光开关、光转换器等,这些材料在机械、电子、纺织、国防等领域都大有作为。光致变色涂料、光致变色玻璃、光致变色墨水的研製和开发,具有现实性的套用意义。除了以上的套用,光致变色材料还可以作为自显影感光 胶片、全息摄影材料、防护和装饰材料、印刷版和印刷电路和伪装材料等。

特别要指出的是,光致变色化合物作为可擦重写光存储材料的研究,是近些年来光致变色领域中研究的热点之一。作为可擦写光存储材料的光致变色光存储介质,应满足在半导体雷射波长範围具有吸收、非破坏性读出、良好的热稳定性、优良的抗疲劳性和较快的回响速度等条件。

紫外吸收光谱和可见吸收光谱都属于分子光谱,它们都是基于物质分子吸收紫外辐射或者可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。紫外-可见光区的划分可以分为:可见光部分(360-760 nm),近紫外区(200-360 nm),远紫外区(10-200 nm),由于远紫外的吸收测量必须在真空条件下进行,使用范围受限,通常紫外可见光区域指的是200-800 nm的范围。

一、紫外-可见吸收光谱的基本原理



投稿以及内容合作可加编辑微信:cailiaorenVIP.

说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。

本文通过X射线荧光光谱的定量分析和紫外-可见光吸收光谱的颜色成因分析,得出人工合成的蓝紫色镁橄榄石的主要成分为MgO和SiO2,并添加了致色金属元素钴和钒,组份相对简单,蓝紫色调的产生与钴离子有关;对合成橄榄石、天然橄榄石和坦桑石进行拉曼光谱(785nm)的定性分析,得到合成镁橄榄石与天然橄榄石都具有特征Si-O伸缩振动引起的拉曼位移820cm-1、853cm-1和961cm-1,而坦桑石中存在特征Si-O伸缩振动引起的拉曼位移866cm-1、923cm-1和1148cm-1,可有效鉴定该三种矿物。

在ZnS胶体的紫外-可见光吸收光谱上可观察到激子吸收峰,胶体的吸收带边约为313 nm,与其体相材料比较,有明显蓝移现象,显示出量子尺寸效应。

用傅立叶变换红外光谱和紫外-可见吸收光谱对制备的醋酸铕(Eu(Ac)3)与聚酰亚胺(PI)杂化材料(PI/Eu(Ac)3)进行了表征,结果表明,Eu3+离子与聚酰亚胺中的O,N发生配位;用XRD分析结果显示,PI/Eu(Ac)3杂化材料为无定形态,且Eu(Ac)3未团聚形成晶相。

测定了阴离子染料橙黄Ⅱ与十六烷基三甲基溴化铵、十六烷基-羟乙基二甲基溴化铵和十六烷基-二羟乙基-甲基溴化铵等3个具有不同头基的季胺盐型阳离子表面活性剂水溶液的紫外-可见吸收光谱,研究了橙黄Ⅱ与表面活性剂之间的相互作用。

在不同浓度的表面活性剂存在下,乳酸左氧氟沙星的紫外-可见吸收光谱发生了明显变化,随着表面活性剂浓度的增加,溶液的吸收强度基本成线性增加。

采用一步法制备了二1-联十六烷醇磷酸氢酯(DHP)脂质双层膜保护的金纳米粒子,并以此为探针用紫外-可见吸收光谱法研究了二价金属离子Ca2+和Mg2+与金纳米粒子表面支撑的DHP双层膜之间的相互作用。

补充资料:吸收光谱(紫外光和可见光)(xishou guangpu

      光透过某一物质时,某些波长的光被该物质吸收,因此在连续光谱中有一段或几段波长的光减弱了或消失了,这种光谱称为吸收光谱。不同物质的吸收光谱不同,这取决于物质的分子、原子和原子团,因此可用吸收光谱来鉴别物质和推测样品的结构;同时吸收光谱的强弱和物质的浓度有关,这个性质可用来做定量分析。
  原理  入射光(I0)经过均匀而透明的溶液时,一部分光被溶质吸收(IA),一小部分被反射(IR),只有一部分可以透过(IT)。
  I0=IA+IR+IT在化学分析中,常用一个"空白"溶液作为参考去校正反射的光,则IR可以忽略不计。

此处 I0又可以看作为透过"空白"的光强度,因为"空白"是不吸收任何光的。所以IT/I0是透光率(T),常用%来表示;但在实际应用中,往往用光吸收 (A)来表示。
  A=logI0/IT图a是以T来表示的吸收光谱,而图b是文献中常见的以A表示的吸收光谱,从这两个图谱可以了解到T和A的关系。
  当某一物质吸收一定波长的光时,若此时A=1,即其透过光的强度为照射光的10%;若A=2,表示浓度大了一倍,其透过光的强度为照射光的1%。根据贝尔定律,A=ELC,A为光吸收,E为吸收系数,L为吸收杯光径,C为浓度。在溶液浓度不很大的情况下,由光在溶液中被吸收的程度A,可以决定溶液的浓度C,这就是吸收光谱定量分析的原理。
  分光光度计的构造和性能  分光光度计通常包括光源,分光系统和受光器等几个主要部分:
  光源  一般340纳米以上采用钨灯作为灯源,340纳米以下采用氢灯或氘灯作为灯源。在安装时,灯丝的位置要调节到恰好对准入光狭缝,此时灵敏度最佳。
  分光系统  指把混合的灯源光分散成个别光波的装置。一般是特殊玻璃或石英制的棱镜;另一种色散系统是衍射光栅。
 通常是光电池或光电倍增管。透过光的能量一般是很小的,受光器能把它转变成电流并放大,光电流的讯号和强弱再用电流计或记录仪显示或记录下来。光狭缝有两种表示方法,一种以毫米表示实际狭缝宽度,另一种用光谱狭缝表示,单位是纳米。狭缝愈小,光纯度愈高,但透过的光强度也愈弱,在实际应用中要根据实验的要求加以调整。存放样品的吸收杯,在测可见光时可采用玻璃制的吸收杯,在测紫外部分时必须采用石英吸收杯。
  常用的分光光度计是直接读数或零点法,也有用记录仪记录的。
  应用  任何物质只要它有吸收光谱,就可以用来做定性和定量分析。
  定性分析  根据样品吸收曲线的形状,并与已知物质吸收光谱对比,可知其是否同一物质。譬如生物样品中,蛋白质吸收高峰一般在280纳米,核酸通常吸收高峰在260纳米。氧化型辅酶Ⅰ吸收高峰在260纳米,而还原型辅酶Ⅰ在 340纳米出现一个新吸收峰。几种不同的核苷酸,它们的250纳米/260纳米和280纳米/260纳米比值是各不相同的,可以方便地区别开。
 ①单组份定量,根据测量到的样品的光吸收值和已知的样品消光系数,可以计算出样品的量。②多组份分析,如果样品是个混合物,其中含有两种或两种以上的吸收物质,这些物质之间不起化学反应,其吸收光谱虽然互相重叠,但各自的吸收峰和峰谷是不同的,这样可以不经分离而直接用光谱法对各个组分进行定量测定。以两个组分A和B的混合物为例,选择二个波长,一个是A组分的最大吸收(憶),另一个是B组分的最大吸收(憻),再分别以A和B溶液在这二个波长下测出各自的消光系数(E憶A、E憶B、E憻A和E憻b),然后再用混合物在这二波长下测出光吸收A憶和A憻。因此

这两个式中除CA和CB是未知浓度外,其余光吸收(A)和消光系数(E)均为已测知数,解这联立方程,即可计算出浓度CA和CB。③酶活性测定,当酶反应的底物或产物中有一个明显的吸收光谱时,借测这个生色基团的出现或消失速度可以跟踪酶的反应。例如氧化型和还原型辅酶Ⅰ的互变在 340纳米处有一个吸收峰的消失或生成,这一特性经常用于测定某些脱氢酶的活性。
 差示分光光度法是测二种吸收光谱之差。其优点是能检出光吸收大的系统中比较小的光吸收变化。①当被测定物质浓度很大,而又不能稀释后再测定,如此测定的误差就会很大。有些高级的分光光度计虽然光吸收可以测到很高值,但也不能无限制的扩大。这种情况下可采用略低于样品浓度的已知浓度纯物质作为参考样品置于空白对照光径中,再进行未知样品浓度的测定,使得欲测定样品的读数仍然落在刻度盘读数范围内。②在研究蛋白质构象中,蛋白质或酶在加入作用物后,光谱会产生微小的变化,而蛋白质本身浓度往往较大,不容易察觉到这种微小变化。此时可在参考光径中把酶和作用物分别置于二个吸收杯中,而在测量光径中把酶和作用物放在同一个吸收杯中,而测量光径中的第二个吸收杯中仅为相应的缓冲液,这样进行波长扫描,可以清楚地观察到某些波长处的变化,并可定量。
  光谱滴定  滴定法中会有 3个组分──滴定剂、被滴定物和生成物。只要这三个组分中任何一个组分有光吸收,且在滴定过程中光吸收会增强或减弱,则可利用光谱法测得其滴定终点,计算其浓度。例如滴定蛋白质中某个氨基酸残基数,可用相应的试剂,每次加入一定体积后搅拌均匀并测其光吸收。尽管每次加入试剂体积极微,但仍需进行体积校正得到校正后的光吸收值。以光吸收为纵坐标,滴定剂量为横坐标,可以得到一个光谱滴定曲线,其转折点即为滴定终点。以蛋白质量与作用试剂的化学计量之比即可计算出此氨基酸残基数。
  在进行光谱分析时,除了仪器本身的性能,以及使用不妥会影响到测定结果外,还有一些因素也会影响实验结果。例如同一样品在不同溶剂中,它的吸收峰和消光系数往往不同;在不同PH下,光谱特性和光吸收也会有所变化。某些特殊情况下(例如酶反应),温度也会影响到测定,都需加以注意。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。

我要回帖

更多关于 紫外光谱对样品量的需求 的文章

 

随机推荐