a÷b=15······8 问a最大能每个学校填几个专业

已有天涯账号?
这里是所提的问题,您需要登录才能参与回答。
"天涯问答"是天涯社区旗下的问题分享平台。在这里您可以提问,回答感兴趣的问题,分享知识和经历,无论您在何时何地上线都可以访问,此平台完全免费,而且注册非常简单。
一个分数如果乘9 4得整数a如果乘15 8得整数b这个分数最小是多少
一个分数如果乘9 4得整数a如果乘15 8得整数b这个分数最小是多少
09-11-11 &匿名提问 发布
数的认识(1)——数和小数 复习内容 知 识 要 点 小 数 1、把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。2、一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。 小数的分类 1、根据整数部分划分:纯小数、带小数2、根据小数部分划分:有限小数、无限小数 无限小数可以分为无限不循环小数和无限循环小数 无限循环小数可以分为:纯循环小数和混循环小数 整数和小数数位顺序表 整 数 部 分 小数点 小 数 部 分 … 亿 级 万 级 个 级 数位 … 千亿位 百亿位 十亿位 亿位 千万位 百万位 十万位 万位 千位 百位 十位 个位 · 十分位 百分位 千分位 万分位 … 计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 一 十分之一 百分之一 千分之一 万分之一 … 多位数的读法和写法 1、多位数的读法:从高位起,一级一级往下读;读亿级或万级的数时,要按照个级的读法来读,再在后面加上“亿”字或“万”字;每级末尾的0都不读,其他数位有一个0或连续有几个0都只读一个“零”。2、多位数的写法:从高位起,一级一级往下写;哪个数位上一个单位也没有,就在哪个数位上写0。 小数的读法和写法 1、小数的读法:通常是整数部分按整数的读法读,小数点读作“点”,小数部分按顺序只读出数字。2、小数的写法:写小数时,整数部分按整数写,小数点写在个位的右下角,小数部分依次写出每一个数位上的数字。 数的改写和省略尾数 1、改写成以“万”或“亿”为单位的数:在一个多位数的“万”位或“亿”位的右边点上小数点,把小数末尾的零去掉,然后再写上“亿”或“万”字。2、省略“万”或“亿”位后面的尾数:又称为四舍五入到“万”或“亿”位;精确到“万”或“亿”位。省略“万”位后面的尾数,就是把千位上的数字用“四舍五入”法取近似值。 数的认识(2)——数的整除 复习内容 知 识 要 点 整除的意义 整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a) 除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。 整除和除尽的联系和区别 整除和除尽,他们所有的结果都没有余数,这是他们的共同点。“除尽”包括“整除”,“整除”是除尽的一种特殊情况。 约数和倍数 1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。 奇数和偶数 1、 能被2整除的数叫偶数。例如:0、2、4、6、8、10…… 注:0也是偶数2、 不能被2整除的数叫基数。例如:1、3、5、7、9…… 整除的特征 1、 能被2整除的数的特征:个位上是0、2、4、6、8。2、 能被5整除的数的特征:个位上是0或5。3、 能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。 质数和合数 1、 一个数只有1和它本身两个约数,这个数叫做质数(素数)。2、 一个数除了1和它本身外,还有别的约数,这个数叫做合数。3、 1既不是质数,也不是合数。4、 自然数按约数的个数可分为:1、质数、合数5、 自然数按能否被2整除分为:奇数、偶数 分解质因数 1、 每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=3×3×2,3和2叫做18的质因数。2、 把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。3、 特殊情况下几个数的最大公约数和最小公倍数。(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。 数的认识(3)——分数和百分数 复习内容 知 识 要 点 分数和百分数的意义 1、 分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。在分数里,表示把单位“1”平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。2、 百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。3、 百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。4、 成数:几成就是十分之几。 分数的种类 按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数 分数、小数和百分数的关系及互化 小 数百分数 分 数 分数和除法的关系及分数的基本性质 1、 联系:分数的分子相当除法的被除数;分母相当于除数;分数值相当于商区别:除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。2、 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。3、 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。 约分和通分 1、 分子、分母是互质数的分数,叫做最简分数。2、 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。3、 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。4、 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。5、 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。 倒 数 1、 乘积是1的两个数互为倒数。2、 2、求一个树(0除外)的倒数,只要把这个数的分子、分母调换位置。3、 1的倒数是1,0没有倒数 分数的大小比较 1、 分母相同的分数,分子大的那个分数就大。2、 分子相同的分数,分母小的那个分数就大。3、 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。4、 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。  vanity”    回答时间
02:11   其他答案复习内容 知 识 要 点 四则运算的意义 加法:把两个数合并成一个数的运算减法:已知两个数的和与其中一个加数,求另一个加数的运算乘法:a、一个数乘以整数,就是求几个相同加数的和的简便运算b、一个数乘以小数或分数,就是求这个数的几分之几是多少除法:已知两个因数的积与其中的一个因数,求另一个因数的运算 四 则 运 算 的 法 则 1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数 数的运算(2)——运算定律和简便算法 复习内容 知 识 要 点 加 法 交换律 a+b=b+a 结合律 (a+b)+c=a+(b+c) 减 法 性 质 a-b-c=a-(b+c) 乘 法 交换律 a×b=b×a 结合律 (a×b)×c=a×(b×c) 分配律 (a+b)×c=a×c+b×c 除 法 商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m) 数的运算(3)——四则混合运算 复习内容 知 识 要 点 四 则 混 合 运 算 无 括 号 只有一级运算——自左而右,依次计算 含有两级运算——先算第二级运算 有 括 号 只有小括号 先内后外 含 有 两 种 括 号 先小(解小括号) 再中(解中括号) 后外(解括号外) 四则运算应用方法 在整数、小数和分数四则混合运算中,应当选择最合理、最简便的方法进行运算 数的运算(4)——文字题
请登录后再发表评论!每件a元购进服装,7月每件b元卖出b》a,平均每天卖15件, 8月在7月基础上每件降20%,与7月比平均每天多卖10件,
每件a元购进服装,7月每件b元卖出b》a,平均每天卖15件, 8月在7月基础上每件降20%,与7月比平均每天多卖10件,
每件a元购进服装,7月每件b元卖出b》a,平均每天卖15件, 8月在7月基础上每件降20%,与7月比平均每天多卖10件,求7、8月的利润总额
﹙b-a﹚×15×31+[﹙1-20%﹚b-a]×&﹙15+10﹚×31
=465﹙b-a﹚+775﹙0.8b-a﹚
=465b-465a+620b-775a
=a
等待您来回答
理工学科领域专家(1)a,b,c在数轴上的位置如图,则,,中最大的数是_________
练习题及答案
(1)a,b,c在数轴上的位置如图,则,,中最大的数是_________
(2)当x=_________10﹣(x﹣2)2有最大值.|x+1|+|x﹣1|的最小值是_________(3)观察探索:购买五种教具a、b、c、d、e的件数和用钱总数如下表所示:
那么购买每种教具各一件共需 _________ 钱.
题型:解答题难度:中档来源:福建省期中题
所属题型:解答题
试题难度系数:中档
答案(找答案上)
解:(1)a﹣b<0,c﹣b>0,a﹣c<0因为正数的倒数是正数,负数的倒数是负数,所以正数的倒数最大,∴最大;(2)10﹣(x﹣2)2要取最大值,就是x=2的时候,讨论x的取值化简|x+1|+|x﹣1|可得故可看到每种情况的最小值都是2.(3)从表格可看出2(a+3b+4c+5d+6e)﹣(a+5b+7c+9d+11e)=a+b+c+d+e=2×=1006,可看出每种教具共需1006元.故答案为:;2;2;1006.
马上分享给同学
初中三年级数学试题“ (1)a,b,c在数轴上的位置如图,则,,中最大的数是_________”旨在考查同学们对
有理数的乘方、
一元一次方程的应用、
……等知识点的掌握情况,关于数学的核心考点解析如下:
此练习题为精华试题,现在没时间做?,以后再看。
根据试题考点,只列出了部分最相关的知识点,更多知识点请访问。
考点名称:
数轴的定义:
规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
数轴具有三要素:
原点、正方向和单位长度,三者缺一不可。
数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。
数轴的意义:
数轴是一种特定几何图形;原点、正方向、单位长度称数轴的三要素,这三者缺一不可。
1)从原点出发,朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。
2)在数轴上表示的两个数,右边的数总比左边的数大。
3)正数都大于0,负数都小于0,正数大于一切负数。
注:单位长度则是指取适当的长度作为单位长度,比如可以取2m作为单位长度&1&,那么4m就表示2个单位长度。长度单位则是指米,厘米,毫米等表示长度的单位。
二者不容混淆。
任何一个实数都可以用数轴上的一个点来表示。
用数轴上的点表示有理数:
每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
2.表示正数的点都在原点右边,表示负数的点都在原点左边。
3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。
数轴的画法:
1.画一条直线(一般画成水平的直线);
2.在直线上根据需要选取一点为原点(在原点下面标上&0&);
3.确定正方向(一般规定向右为正,并用箭头表示出来);
4.选取适当的长度为单位长度,
从原点向右,每隔一个单位长度取一点,依次表示1,2,3,&;
从原点向左,用类似的方法依次表示-1,-2,-3,&。
数轴的应用范畴:
符号相反的两个数互为相反数,零的相反数是零。(如2的相反&2)
在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。
考点名称:
倒数的定义:
是指数学上设一个数x与其相乘的积为1的数,记为1/x或x,过程为&乘法逆&,除了0以外的复数都存在倒数, 倒数图将其以1除,便可得到倒数。 两个数乘积是1的数互为倒数,0没有倒数。
倒数性质:
(1)若a、b互为倒数,则ab=1,或,反之也成立;
(2)0没有倒数;
(3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。
倒数的特点:
一个正实数(1除外)加上它的倒数 一定大于2。
理由:a/b,b/a为倒数当a&b时a/b一定大于1,可写为1+(a-b)/b。因为:
& &b/a+(a-b)/a
=b&b/a&b+(a&b-b&b)/ab
=(a&a-b&b+b&b)/ab
=a&a/a&b,
又因为a&b,
所以a&a&a&b,
所以a&a/a&b&1,
所以1+(a-b)/b+a&a/a&b&2,
所以一个正实数加上它的倒数一定大于2。
当b&a时也一样。
同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。
倒数的求法:
1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。
2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
说明:倒数是本身的数是1和-1。(0没有倒数)
把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
再把4/1化成整数,即4,所以0.25是4的倒数。也可以说4是0.25的倒数,也可以用1去除以这个数,例如0.25
1/0.25等于4
所以0.25的倒数4.
因为乘积是1的两个数互为倒数。
分数、整数也都使不完整用这种规律。
考点名称:
有理数乘方的定义:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作&2的2次幂&、&7的3次幂&,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。
乘方的性质:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何正整数次幂都得0.
有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0
知识点点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。
乘方示意图:
考点名称:
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
做一元一次方程应用题的重要方法:
(1)认真审题(审题)
(2)分析已知和未知量
(3)找一个合适的等量关系
(4)设一个恰当的未知数
(5)列出合理的方程 (列式)
(6)解出方程(解题)
(8)写出答案(作答)
方程就是一个含未知数的等式。列方程解应用题,就是要将实际问题中的一些数量关系用这种含有未知数的等式的形式表示出来。而在这种等式中的每个式子又都有自身的实际意义,它们分别表示题设中某一相应过程的数量大小或数量关系。由此,解方程应用题的关键就是要&抓住基本量,找出相等关系&。
一元一次方程应用题型及技巧:
(1)和差倍分问题:
①倍数关系:通过关键词语&是几倍,增加几倍,增加到几倍,增加百分之几,增长率&&&来体现。
②多少关系:通过关键词语&多、少、和、差、不足、剩余&&&来体现。
③基本数量关系:增长量=原有量&增长率,现在量=原有量+增长量。
(2)行程问题:
基本数量关系:路程=速度&时间,时间=路程&速度,速度=路程&时间,
路程=速度&时间。
①相遇问题:快行距+慢行距=原距;
②追及问题:快行距-慢行距=原距;
③航行问题:
顺水(风)速度=静水(风)速度+水流(风)速度,
逆水(风)速度=静水(风)速度-水流(风)速度
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
两车同时开出,相背而行多少小时后两车相距600公里?
两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)
例: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
(3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。 这类问题要搞清人数的变化。
例.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?
(4)工程问题:
三个基本量:工作量、工作时间、工作效率;
其基本关系为:工作量=工作效率&工作时间;相关关系:各部分工作量之和为1。
例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
(5)利润问题:
基本关系:
①商品利润=商品售价-商品进价;
②商品利润率=商品利润/商品进价&100%;
③商品销售额=商品销售价&商品销售量;
④商品的销售利润=(销售价-成本价)&销售量。
⑤商品售价=商品标价&折扣率例.
例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
(6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a, 百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。
数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;
偶数用2n表示,连续的偶数用2n+2或2n&2表示;奇数用2n+1或2n&1表示。
例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
(7)盈亏问题:&盈&表示分配中的多余情况;&亏&表示不足或缺少部分。
(8)储蓄问题:
其数量关系是:
利息=本金&利率&存期;:(注意:利息税)。
本息=本金+利息,利息税=利息&利息税率。
注意利率有日利率、月利率和年利率,年利率=月利率&12=日利率&365。
(9)溶液配制问题:
其基本数量关系是:溶液质量=溶质质量+溶剂质量;
溶质质量=溶液中所含溶质的质量分数。
这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。
(10)比例分配问题:
这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
还有劳力调配问题、配套问题、年龄问题、比赛积分问题、增长率问题等都会有涉及。&
相关练习题推荐
与“ (1)a,b,c在数轴上的位置如图,则,,中最大的数是_________”相关的知识点试题(更多试题练习--)
微信沪江中考
CopyRight & 沪江网2014填一填。1、A=2x3x7,B=2X3X11,C=2X3X13,这三个数的公因数有(
),最大公因数是(
)。2、分子和分母只有公因数1的分数是(
)分数。3、找出个组的最大公因数,再写你的发现。1、8和16、21和7、5和15、32和4、我发现:2、5和6、8和9、13和14、11和10、我发现: - 同桌100学习网
您好,欢迎您来到![]或[]
在线解答时间:早上8:00-晚上22:30周六、日照常
填一填。1、A=2x3x7,B=2X3X11,C=2X3X13,这三个数的公因数有(
),最大公因数是(
)。2、分子和分母只有公因数1的分数是(
)分数。3、找出个组的最大公因数,再写你的发现。1、8和16、21和7、5和15、32和4、我发现:2、5和6、8和9、13和14、11和10、我发现:
请老师帮我写出答案。
提问者:liaozheng99
上传:[注意:图片必须为JPG,GIF格式,大小不得超过100KB]
您好,欢迎来到同桌100!您想继续回答问题?您是新用户?
1、A=2x3x7,B=2X3X11,C=2X3X13,这三个数的公因数有(2,3,6 ),最大公因数是(6 )
2、分子和分母只有公因数1的分数是(最简 )分数
3、找出个组的最大公因数,再写你的发现。
1、8和16、21和7、5和15、32和4、我发现:8,7,5,4.当这组数中的一个数可以被另一个数整除时,它们的最大公因数是较小的那一个.
2、5和6、8和9、13和14、11和10、我发现:1.当这组数中的两个数互质时,它们的最大公因数是1
回答者:teacher069

我要回帖

更多关于 几楼噪音最大 的文章

 

随机推荐