x轴绝对值函数图像的翻折问题。哪些情况将x轴下方的图像翻上来、将图像翻在y轴左边?求详细的解答

如图二次函数y=(x+m)^2+k的图像,其顶点坐标为M(1,-4)(3)将二次函数的图像在x轴下方部分沿x轴翻折,图像的其余部分保持不变,得到一个新的图像,请你结合这个新的图像回答:当直线y_作业帮
拍照搜题,秒出答案
如图二次函数y=(x+m)^2+k的图像,其顶点坐标为M(1,-4)(3)将二次函数的图像在x轴下方部分沿x轴翻折,图像的其余部分保持不变,得到一个新的图像,请你结合这个新的图像回答:当直线y
如图二次函数y=(x+m)^2+k的图像,其顶点坐标为M(1,-4)(3)将二次函数的图像在x轴下方部分沿x轴翻折,图像的其余部分保持不变,得到一个新的图像,请你结合这个新的图像回答:当直线y=x+b(b
y=x+b经过B点(3,0)时,4+b=0,b=-4,与图像有一个交点; y=x+b经过A(-1,0)点时,-1+b=0,b=1,与图像有三个交点; y=x+b经过M'(1,4)点时,1+b=4,b=3,与图像有三个交点;
当直线y=x+b(b当前位置:
>>>如图,抛物线y=-x2+2mx+m+2的图象与x轴交于A(-1,0),B两点,在x..
如图,抛物线y=-x2+2mx+m+2的图象与x轴交于A(-1,0),B两点,在x轴上方且平行于x轴的直线EF与抛物线交于E,F两点,E在F的左侧,过E,F分别作x轴的垂线,垂足是M,N.(1)求m的值及抛物线的顶点坐标;(2)设BN=t,矩形EMNF的周长为C,求C与t的函数表达式;(3)当矩形EMNF的周长为10时,将△ENM沿EN翻折,点M落在坐标平面内的点记为M',试判断点M'是否在抛物线上?并说明理由.
题型:解答题难度:中档来源:不详
(1)由于抛物线过点A(-1,0),于是将A代入y=-x2+2mx+m+2得-1-2m+m+2=0,解得m=1,函数解析式为y=-x2+2x+3,解析式可化为y=-(x-1)2+4,顶点纵坐标为(1,4).(2)因为函数解析式为y=-x2+2x+3,所以当y=0时可得-x2+2x+3=0,解得x1=-1,x2=3,则AB=3-(-1)=4.又因为BN=t,M、N关于对称轴对称,所以AM=t.于是MN=4-2t,N点横坐标为3-t,代入抛物线得:yF=-t2+4t.于是C=2(4-2t)-2(t-2)2+8,整理得C=-2t2+4t+8;(3)当-2t2+4t+8=10时,解得t=1,MN=4-2t=4-2=2;FN=-12+4=3,因为t=1,所以M与O点重合,连接MM'、EN,且MM'和E相交于K,根据反折变换的性质,MK=M'K.根据同一个三角形面积相等,2×3=22+32oMK于是MK=61313,MM'=121313作M'H⊥MN的延长线于H.设NH=a,HM′=b,于是在Rt△NHM'和RT△MHM'中,a2+b2=4(a+2)2+b2=(161313)2,解得a=1013,b=2413.于是MH=2+1013=3613.M'点坐标为(3613,2413),代入函数解析式y=-x2+2x+3,y=-x2+2x+3=-(3613)2+2×3613+3=147169≠2413,点M'不在抛物线上.
马上分享给同学
据魔方格专家权威分析,试题“如图,抛物线y=-x2+2mx+m+2的图象与x轴交于A(-1,0),B两点,在x..”主要考查你对&&求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“如图,抛物线y=-x2+2mx+m+2的图象与x轴交于A(-1,0),B两点,在x..”考查相似的试题有:
414570892212113594345391920121429020您还未登陆,请登录后操作!
函数图象的变化
图象的翻折变换
(1)y=f(x)的图像保留y轴右侧部分,把y轴右侧部分翻折左边,原左边部分去掉后图像是y=
(2)y=f(x)的图像保留y轴左侧部分,把y轴左侧部分翻折右边,原右边部分去掉后图像是 y=
(3)y=f(x)的图像保留y轴上方部分,把y轴下方部分翻折上方,原下方部分去掉后图像是 y=
(4)y=f(x)的图像保留y轴下方部分,把y轴上方部分翻折下方,原上方部分去掉后图像是 y=
4. -/f(x)/
注:“//”代表绝对值
大家还关注当前位置:
>>>如图,直线经过点B(,2),且与x轴交于点A.将抛物线沿x轴作左右平..
如图,直线经过点B(,2),且与x轴交于点A.将抛物线沿x轴作左右平移,记平移后的抛物线为C,其顶点为P。(1)求∠BAO的度数;(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;(3)在抛物线平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由。
题型:解答题难度:偏难来源:江苏期末题
解:(1)∵点B在直线AB上,求得b=3, ∴直线AB:, ∴A(,0),即OA=,作BH⊥x轴,垂足为H.则BH=2,OH=,AH=2,∴,∴; (2)设抛物线C顶点P(t,0),则抛物线C:,  ∴E(0,) ∵EF∥x轴,∴点E、F关于抛物线C的对称轴对称, ∴F(2t,)∵点F在直线AB上, ∴∴∴抛物线C为;(3)假设点D落在抛物线C上,不妨设此时抛物线顶点P(t,0),则抛物线C:,AP=+t,连接DP,作DM⊥x轴,垂足为M,由已知,得△PAB≌△DAB,又∠BAO=30°,∴△PAD为等边三角形,PM=AM=, ∴∴ ∴∴∵点D落在抛物线C上, ∴∴ 当时,此时点P,点P与点A重合,不能构成三角形,不符合题意,舍去,所以点P为(,0) ∴当点D落在抛物线C上顶点P为(,0)。
马上分享给同学
据魔方格专家权威分析,试题“如图,直线经过点B(,2),且与x轴交于点A.将抛物线沿x轴作左右平..”主要考查你对&&求二次函数的解析式及二次函数的应用,轴对称,解直角三角形,平移&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用轴对称解直角三角形平移
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等;(3)关于某直线对称的两个图形是全等图形。轴对称的判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。这样就得到了以下性质: 1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。  4.对称轴是到线段两端距离相等的点的集合。
轴对称作用:可以通过对称轴的一边从而画出另一边。 可以通过画对称轴得出的两个图形全等。 扩展到轴对称的应用以及函数图像的意义。
轴对称的应用:关于平面直角坐标系的X,Y对称意义如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。 相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。
关于二次函数图像的对称轴公式(也叫做轴对称公式 )设二次函数的解析式是 y=ax2+bx+c 则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a
在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等。另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。概念:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。 解直角三角形的边角关系: 在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c, (1)三边之间的关系:(勾股定理); (2)锐角之间的关系:∠A+∠B=90°; (3)边角之间的关系:。 解直角三角形的函数值:
锐角三角函数:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a(1)互余角的三角函数值之间的关系:若∠ A+∠ B=90°,那么sinA=cosB或sinB=cosA(2)同角的三角函数值之间的关系:①sin2A+cos2A=1②tanA=sinA/cosA③tanA=1/tanB④a/sinA=b/sinB=c/sinC(3)锐角三角函数随角度的变化规律:锐角∠A的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。解直角三角形的应用: 一般步骤是: (1)将实际问题抽象为数学问题(画图,转化为直角三角形的问题); (2)根据题目的条件,适当选择锐角三角函数等去解三角形; (3)得到数学问题的答案; (4)还原为实际问题的答案。 解直角三角形的函数值列举:sin1=0.28351 sin2=0.50097 sin3=0.94383 sin4=0.1253 sin5=0.65816 sin6=0.65346 sin7=0.14747 sin8=0.06544 sin9=0.23087 sin10=0.93033 sin11=0.5448 sin12=0.75931 sin13=0.86497 sin14=0.66773 sin15=0.52074 sin16=0.99916 sin17=0.7367 sin18=0.9474 sin19=0.1567 sin20=0.6687 sin21=0.30027 sin22=0.912 sin23=0.2737 sin24=0.80015 sin25=0.69944 sin26=0.0774 sin27=0.54675 sin28=0.8908 sin29=0.33706 sin30=0.99994 sin31=0.0542 sin32=0.2049 sin33=0.027 sin34=0.7468 sin35=0.046 sin36=0.4731 sin37=0.0483 sin38=0.6583 sin39=0.8375 sin40=0.5392 sin41=0.5073 sin42=0.8582 sin43=0.4985 sin44=0.9972 sin45=0.5475 sin46=0.6511 sin47=0.1705 sin48=0.3941 sin49=0.7719 sin50=0.978 sin51=0.9708 sin52=0.7219 sin53=0.2928 sin54=0.9474 sin55=0.9918 sin56=0.0417 sin57=0.4239 sin58=0.426 sin59=0.1122 sin60=0.4386 sin61=0.3957 sin62=0.9269 sin63=0.3678 sin64=0.167 sin65=0.6499 sin66=0.6009 sin67=0.4404 sin68=0.7873 sin69=0.2017 sin70=0.9083 sin71=0.3167 sin72=0.1535 sin73=0.0354 sin74=0.3189 sin75=0.0683 sin76=0.9965 sin77=0.2352 sin78=0.8057 sin79=0.664 sin80=0.208 sin81=0.1378 sin82=0.5704 sin83=0.322 sin84=0.2733 sin85=0.7455 sin86=0.8242 sin87=0.5738 sin88=0.0958 sin89=0.3913 sin90=1
cos1=0.3913 cos2=0.0958 cos3=0.5738 cos4=0.8242 cos5=0.7455 cos6=0.2733 cos7=0.322 cos8=0.5704 cos9=0.1378 cos10=0.208 cos11=0.664 cos12=0.8057 cos13=0.2352 cos14=0.9965 cos15=0.0683 cos16=0.3189 cos17=0.0355 cos18=0.1535 cos19=0.3168 cos20=0.9084 cos21=0.2017 cos22=0.7874 cos23=0.4404 cos24=0.6009 cos25=0.6499 cos26=0.167 cos27=0.3679 cos28=0.927 cos29=0.3957 cos30=0.4387 cos31=0.1123 cos32=0.426 cos33=0.424 cos34=0.0417 cos35=0.9918 cos36=0.9474 cos37=0.2928 cos38=0.7219 cos39=0.9709 cos40=0.978 cos41=0.772 cos42=0.3942 cos43=0.1705 cos44=0.6512 cos45=0.5476 cos46=0.9974 cos47=0.4985 cos48=0.8582 cos49=0.5074 cos50=0.5394 cos51=0.8375 cos52=0.6583 cos53=0.0484 cos54=0.4731 cos55=0.0462 cos56=0.7468 cos57=0.0272 cos58=0.2049 cos59=0.0544 cos60=0.0001 cos61=0.3371 cos62=0.89086 cos63=0.5468 cos64=0.07746 cos65=0.69944 cos66=0.8004 cos67=0.2737 cos68=0.9122 cos69=0.30015 cos70=0.6688 cos71=0.15675 cos72=0.94745 cos73=0.73677 cos74=0.99916 cos75=0.52074 cos76=0.66767 cos77=0.86514 cos78=0.75923 cos79=0.54491 cos80=0.93041 cos81=0.23092 cos82=0.06546 cos83=0.14749 cos84=0.65346 cos85=0.65836 cos86=0.12523 cos87=0.943966 cos88=0.50108 cos89=0.2836 cos90=0
tan1=0.217585 tan2=0.74773 tan3=0.041196 tan4=0.51041 tan5=0.92401 tan6=0.67646 tan7=0.9046 tan8=0.39145 tan9=0.53627 tan10=0.46497 tan11=0.71848 tan12=0.0221 tan13=0.5631 tan14=0.18068 tan15=0.1227 tan16=0.8079 tan17=0.66033 tan18=0.9063 tan19=0.66527 tan20=0.20234 tan21=0.4158 tan22=0.1568 tan23=0.6047 tan24=0.5361 tan25=0.9986 tan26=0.8614 tan27=0.4288 tan28=0.4788 tan29=0.769 tan30=0.6257 tan31=0.5604 tan32=0.3275 tan33=0.5104 tan34=0.4265 tan35=0.7097 tan36=0.3609 tan37=0.7942 tan38=0.7174 tan39=0.0072 tan40=0.2799 tan41=0.2267 tan42=0.8399 tan43=0.6618 tan44=0.0739 tan45=0.9999 tan46=1.5693 tan47=1.6826 tan48=1.1927 tan49=1.0092 tan50=1.21 tan51=1.051 tan52=1.0785 tan53=1.4098 tan54=1.1733 tan55=1.1144 tan56=1.7403 tan57=1.5827 tan58=1.0506 tan59=1.5173 tan60=1.8767 tan61=1.4235 tan62=1.3318 tan63=1.1503 tan64=2.296 tan65=2.5586 tan66=2.215 tan67=2.753 tan68=2.2946 tan69=2.8023 tan70=2.6216 tan71=2.822 tan72=3.2526 tan73=3.1404 tan74=3.9087 tan75=3.8776 tan76=4.8455 tan77=4.153 tan78=4.456 tan79=5.307 tan80=5.707 tan81=6.041 tan82=7.207 tan83=8.593 tan84=9.587 tan85=11.32 tan86=14.942 tan87=19.16 tan88=28.515 tan89=57.144 tan90=(无限)定义:将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。 平移基本性质:经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等(3)多次连续平移相当于一次平移。(4)偶数次对称后的图形等于平移后的图形。(5)平移是由方向和距离决定的。这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移平移的条件:确定一个平移运动的条件是平移的方向和距离。
平移的三个要点1 原来的图形的形状和大小和平移后的图形是全等的。2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)3 平移的距离。(长度,如7厘米,8毫米等)
平移作用:1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。平移作图的步骤:(1)找出能表示图形的关键点;(2)确定平移的方向和距离;(3)按平移的方向和距离确定关键点平移后的对应点;(4)按原图的顺序,连结各对应点。
发现相似题
与“如图,直线经过点B(,2),且与x轴交于点A.将抛物线沿x轴作左右平..”考查相似的试题有:
201403922975148271924924503178147762

我要回帖

更多关于 绝对值函数图像 的文章

 

随机推荐