发现物理中的美有什么美?

“物理中的简洁美”的研究性课题的目的与意义怎么写?_百度作业帮
“物理中的简洁美”的研究性课题的目的与意义怎么写?
物理学的简单美,指理论越简单,解决问题越多,逻辑关联现象越广泛,理论就越可信,也越漂亮.也就是在保证与描述对象完全相符的前提下,物理学理论越简单越好.合逻辑的方法,非常简洁有效;也就称是物理学简单美.
您可能关注的推广物理学中的美
物理学中的美 广西玉林市博白县实验中学&&&&&&&&&&&&& 刘& 杰
摘要:本文主要阐述物理学在自然美、科学美和精神美方面的美学内涵,让广大师生充分认识物理美,加强在物理教学中实施美育渗透,全面推进素质教育。 关键词:& 自然美、科学美、精神美 &&& 物理是研究自然界中物体运动变化规律的一门科学,是自然科学的一个重要组成部分,那么物理中蕴涵着美也是必然的。物理中的美是科学美的一部分,而科学美又不同于艺术美那么直观,不易为人们所理解,为揭示物理学中的美,本文就根据美的一般范畴和领悟方法,做一抛砖引玉的浅论,物理中有自然美、科学美和精神美。
一、物理现象的自然美 &&& 中学物理涉及力、声、热、光、电、磁和原子物理等内容,物理现象千姿百态、美妙无穷。如星移斗转、日夜交替、春秋轮回、物态互变等自然规律,因有序而美;光的反射与倒影、折射与海市蜃楼、色散与彩虹、日食和月食都有奇异的美。人类在研究和应用物理方面创造的辉煌成果,是美的精品。蒸汽机、发电机、激光器、电子对撞机的发明,步步促进人类生产、生活和高科技的发展;“阿波罗”登月成功,“嫦娥奔月”的传说变成了现实美谈,“神五神六”畅游太空再次实现人类超载地球之梦;众多的航天器和卫星正在全球通讯、气象观测、国防和科研等方面建功立业;电磁技术、激光技术、能源开发技术突飞猛进;核电站、太阳能电站的相继林立充分展示了物理前景无限美好。 && 二、物理理论的科学美 &&& 现代物理学家杨振宁教授说过:“科学中存在美,所有的科学家都有这样的感觉”。物理学具有简洁、对称、和谐与新奇方面的科学美感,是“审美者通过理解、想象、逻辑思维所体验到的美。” 1、简洁美
简洁美是以简单、洁净呈现其美感,简洁美是科学美的特征之一。著名物理学家爱因斯坦曾指出:“自然规律的简单性也是一种客观事实,而且正确的概念体系必须使这种简单性在主观方面和客观方面保持平衡。”所以,作为反映物体运动变化规律的物理来说,那种最简洁的物理理论最能给人以美的享受,物理美的简洁性并不是指物理内容本身简单,而是物理理论体系的结构和物理规律的数学表达形式简洁。例如,爱因斯坦的质能方程E=mc2,其反映的质量与能量之间的联系及其数学表达式简洁无比,但却成了指导了人们进一步对核反应规律的认识和从核反应中去获得巨大能量的基础理论,从这点讲又是深刻的。如物理学家提出质点、单摆、理想气体和点电荷;匀速直线运动、自由落体运动、弹性碰撞等模型的观点,再用公式定义物理量和表达物理规律,大大简化了物理问题,十分简洁优美。
2、对称美 &&& 对称性给人的美感是“圆满、均衡和协调”。人们这样描述对称性:若图形通过某种操作(如时空坐标系的改变,尺度的放大和缩小)又回到它本身,则这样的图形具有对称性。对称性的概念应用于物理,研究对象不仅是图形,还有物理量和物理规律。“对称美”在物理中显而易见。从空间角度看,原子的核式结构、晶体的空间点阵、磁体的两极是对称的;物体的上升下落,圆周运动是对称的;物体的平衡、弹性形变、简谐振动具有对称性;平面镜成像、光与波的反射更具有对称美。从时间角度看,行星的公转与自转、理想单摆和简谐振动、波的传播都具有时间周期性的对称美。对称性的美学意境引起很多科学家的心驰神往,从伽利略时代开始,物理学家就把追求理论上的对称性作为一种有效的研究手法,并取得了成功。例如牛顿发现万有引力(F=Gm1m2/r2)和库仑的静电力(F=Kq1q2/r2)非常对称;法拉弟受奥斯特“电生磁”现象的启发之后发现了“磁生电”的现象,进一步揭示了电磁联系;后人还发现电场和磁场在规律上有许多惊人的对称关系。
和谐美是理性地研究自然的基本思路,自然界存在的和谐性是很多科学家固定的思想方式和研究方法,并成为一种信念和追求。和谐美是指事物和现象的各种要素、各个部分、各个方面的协调有序、匀称流畅,就具有多样化的特殊统一美。例如,磁通量把本来并不存在的抽象物理模型——磁感线与描述客观存在的磁场强弱的物理量——磁感应强度有机的联系了起来,这就充分体现了和谐美的主要特征:协调有序和多样统一。再例如,上,人们对光的本性认识从牛顿的微粒说到惠更斯的机械波动,从麦克斯韦的电磁波到爱因斯坦的光子说,表面上看似乎冲突,最终却被电动力学所统一,其对立的理论被有机地统一了起来,充分体现了物理世界的和谐美。
4、新奇美 &&& “新奇”也是物理美的特点。物理学发展到今天,无论是理论方面还是实践方面都是硕果累累,新颖的发明创造和新奇的理论成果层出不穷。。自然界中的物体都有区别于其它物体的个性,这种个性往往闪烁着超群脱俗、不同凡响的新奇美,正如培根所说:“没有一个极美的东西不是在调和中有某种奇特!”科学的新奇美表现在两个方面,一是概念或结论的不同凡响、惊人骇世;二是其表达的神奇奥妙、令人折服,例如,E=mc2告诉我们每单位物质都具有惊人的能量,而原子弹、氢弹则能释放出这种惊天地泣鬼神的能量,E=mc2所表达的内涵就是如此的深刻,而形式又是这样的简洁,确给人以一种惊人骇世之感,这就是一种新奇美。
三、物理学家的精神美 &&& 物理理论的科学美具有很高的审美价值,而物理学家的精神美堪称无价之宝。中无论是从哥白尼的、爱迪生的发明,或者法拉第的发电机、周光召的原子弹,还是牛顿定律、麦克斯韦方程与爱因斯坦理论都能领略到伟人美的风范。回顾物理学的发展史,可知这座辉煌的殿堂,凝聚了多少人的智慧和心血。其中牛顿和爱因斯坦这两位科学巨人,永远是中学“德育”和“美育”的典范。所有的科学家,都具有伟大的思想和天才的智慧,不馁的精神和高尚的品格。华裔物理学家丁肇中力排美国政府的阻挠,登上诺贝尔授奖台,用汉语作了一次激动人心的演讲,二千多名来宾为之震动。这是1901年诺贝尔奖问世以来,500多名获奖者中第一次用中国人民的语言在这里演讲。他要在这科学圣地抒发中华民族子孙的自豪感。他们给人类留下了丰富的物质和精神财富。科学是美的,创造科学的人更美。&&& 总之,物理现象五彩缤纷,其中有直观亮丽、奇特美妙的自然景观;也有简洁优美、博大精湛的理论科学;还有千古留芳、永不磨灭的艺术足迹。把“物理美”延续下去,我们责无旁贷。mwwu为《至美无相:创造...》写的书评
已读并评分
《至美无相》新书介绍
《至美无相》新书介绍 吴明卫 (中国科学技术大学 物理系)我的朋友意大利人乔万尼 (Giovanni Vignale)兄是在美国Missouri大学物理系供职的讲席教授,他除了在凝聚态理论研究方面成就斐然,著述颇丰外,兴趣广泛,对艺术、哲学和文学都有涉猎。几年前在我们闲聊当下学生缺乏做物理(科学)的品味时,他提到他正在写一本关于物理的科普书,从哲学和艺术的角度来看物理学,冀望对提高学生欣赏物理的能力会有裨益,只是担心写出来后没有出版社肯出。当时我就对此书充满了兴趣,并和乔万尼兄讨论了该书的大概内容。此后我一直期盼着该书能早日付梓。后来我听说他正在找出版社,似乎并不顺利。忽于两年前,收到了乔万尼兄寄来的新书,不禁欣喜过望,一睹为快。我越读越觉得有必要将此书介绍给国内的读者,尤其是年青的学生。我们知道,科学和艺术无论是在审美还是在抽象方面,都有着极大的相通性。在这本书中,乔万尼兄用了大量的故事(涵盖了圣经故事、印度的早期史诗、文学名著)、绘画、事例展现了抽象在物理学,尤其是理论物理学中的威力:理论物理通过富有创造性的想象之透镜来认知感官世界,是用事实做为约束的虚构。一个物理理论从来不是原样地反映自然,而是对自然现实的理想化――是离题(抽象)的现实,是思想的极限。书中将物理学的审美和艺术的审美直接/间接地加以联系,将虚幻的呈现与真实的存在、大胆的假定与小心的求证、形式与抽象等的关系通过一系列故事、艺术作品自然地展现给读者。全书浸淫着的想象力及自由思想对科学(人类)发展的重要作用,而想象力及自由思想正是我们目前教育所奇缺的。因此我相信,这本书对于学生在学习时,从另外一个更高的视角品味物理、品味学问更进而品味人生;学会自由思考(思想)而不是只看重记忆及解题,提高学术(人文)品味,无疑会有诸多裨益。承蒙乔万尼兄欣然应允,及中国科学技术大学出版社郝诗仙社长慨然玉成,我们得以获得中文译本的版权。由于此书涉猎的人文背景甚为宽广,翻译此书难度极大,远非常人力所能及。光是此书的书名“The Beautiful Invisible”就极难翻译,且在翻译中要批阅大量背景资料(有些只有意大利语的版本),难度之大可想而知。所幸吾兄中科院物理所曹则贤研究员博闻强识,通晓数国语言,在繁重的科学研究之余,致力于物理学教育,出版了《物理学咬文嚼字》等一系列著作,为翻译此书的不二人选。涕蒙则贤兄慨然应允,并在一年不到的时间给出了精确优美的译本,实为我等广大读者之幸。书名中“invisible”翻成“无相”,得到吾友九华山沩仰宗第十一代禅人及临济宗第四十六代禅人妙虚法师之提点,在此一并致谢为忱。
(意)维尼亚勒 著,曹则贤 译
中国科学技术大学出版社
理论物理如同一部好的小说,其内容既是完全虚构的又是真实的。物理学中那些最重要的内容可能都是不可见的、不着相的。本书试图弥合理论物理高端思想与常见教程内容之间的罅隙,其目的是理解和玩味理论物理思想和方法之优雅的美。作者广泛引用著名文学作品,引导读者穿过贴满不可见的、我们永不能窥视其色彩的图画的理论物理长廊,展示了抽象的理论思想是如何在泥泞的物质世界里踟蹰前行的。阅读本书不仅能学到物理知识,而且还是一...您已经赞过此文了。
诺贝尔物理学奖得主Murray Gell-Man浅谈物理中的美
发表时间:浏览量:7767评论数:4挑错数:0
诺贝尔奖得主 Murray Gell-Mann 用简单和幽默的语言向我们介绍了粒子物理的知识。优美的方程比不优美的方程更加正确吗?所谓“超弦理论”的基本定理真的能够解释一切吗?他的回答会给你们带来惊喜。
由于老爷子上岁数了,加之是脱稿演讲,部分地方很难理解(有些语无伦次?^_^)因此翻译起来很难。希望有高手指点。
Wielding laypeople's terms and a sense of humor, Nobel Prize winner Murray Gell-Mann drops some knowledge
about particle physics, asking questions like, Are elegant equations more likely to be right than inelegant ones? Can the fundamental law, the so-called &theory of everything,& really explain everything? His answers will surprise you.
诺贝尔奖得主 Murray Gell-Mann(也被称为夸克之父) 用简单和幽默的语言向我们介绍了粒子物理的知识。优美的方程比不优美的方程更加正确吗?所谓“万有理论”的基本定理真的能够解释一切吗?他的回答会给你们带来惊喜。
Thank you for putting up these pictures of my colleagues over here. (laughter) We'll be talking about them.
谢谢你们把我同事的这些照片挂在这里。(众笑)我们待会就会谈到他们。
Now, I'm gonna try an experiment. I don't do experiments, normally. I'm a theorist. But I'm gonna see what happens if I press this button. (presses button on remote)
现在我要做一个实验。我平时是不做实验的,我是一个理论物理学家。但我还是要看看当我按下按钮时会发生什么。
(slide appears: &Elementary particles are the building blocks of all matter everywhere in the universe. Their properties are connected with the fundamental forces of nature. We are very familiar through observation with four such forces:
Gravitation
Electromagnetism
The Strong Force, which holds atomic nuclei together
The Weak Force, responsible for several forms of radioactivity&)
(幻灯片出现:”基本粒子组成了宇宙里的所有物质。其的性质由自然界的力量所决定。通过观察他们是四种相似的力:
强相互作用:使原子核能结合在一起
弱相互作用:存在于几种粒子的作用中“)
Sure enough. OK. I used to work in this field of elementary particles, what happens to matter if you chop it up very fine. What is it made of. And the laws of these particles are valid throughout the universe, and they're very much connected with the history of the universe. We know a lot about four forces. There must be a lot more, but those are at very very small distances and we haven't really interacted with them very much yet.
我过去的科研方向是基本粒子,如果你把他们再分下去会怎样呢?他们是由什么组成的呢?整个宇宙里,这些基本粒子所遵循的物理规律都是一致的,他们和整个宇宙的规律都有联系。我们已经很了解这四种力。但是在极其微小的尺度上,我们还有很多不了解的。
(slide- &What is especially striking and remarkable is that in fundamental physics a beautiful or elegant theory is more likely to be right than a theory that is inelegant&)
(幻灯片出现:基础物理中让人惊奇的一个事实是那些美丽和优雅理论比非优雅的理论更为正确。)
The main thing I want to talk about is this, that we have this remarkable experience in this field of fundamental physics, that beauty is a very successful criterion for choosing the right theory. And why on earth could that be so?
我最想说的就是在基础物理领域我们有这个显著的经验,那种美是我们选择正确理论的标准。但这究竟是为什么呢?
(slide-&In 1957 some of us put forward a partially complete theory of the weak force, in disagreement with the results of seven experiments. It was beautiful and so we dared to publish it, believing that all those experiments must be wrong.
In fact, they were all wrong.&)
(幻灯片出现:在1957年,我们中有人提出一个还算完整的弱相互作用理论,但是却与7个实验事实矛盾。这个理论很优美,所以我们敢于出版它,并坚信那些实验是错的。事实上,他们全是错的。)
Well, here's an example from my own experience. It's fairly dramatic, actually, to have this happen. Three or four of us, in 1957, put forward a partially complete theory of one of these forces, this weak force. And it was in disagreement with seven -- seven -- count them! Seven experiments. Experiments were all wrong. And we published before knowing that, because we figured it was so beautiful, gotta be right! And the experiments had to be wrong, and they were. Now, our friend over there (gestures to Einstein portrait), Albert Einstein, used to pay very little attention when people said, 'you know, there's a man with an experiment that seems to disagree with special relativity. D.C. Miller, what about that?' He would say, aw, that'll go away. (laughs)
Now why does stuff like that work? That's the question.
让我讲一个我自己的经历吧。它非常有戏剧性。在1957年,我们中的3,4个人提出了一个还算完整的弱相互作用理论。它和当时7个实验的结果都不符。想一想,有7个之多啊。后来知道那些实验都是错的。但我们当时并不知道这些,可我们还是出版了我们的理论。因为我们发现这个理论太美了,应该错不了。那些那些实验必须是错的,他们的确也是错的。当有人对我们的朋友爱因斯坦说,&D. C. Miller的实验结果看起来和狭义相对论有矛盾,这是怎么回事?&他会说,噢,别傻了。(众笑)现在为什么像那样的事有效呢?这就是个问题。
(slide-&What do we mean by beauty and elegance?
Why is beauty or elegance a successful criterion in choosing a correct theory in fundamental physics?
What is the role here, if any, of human beings and human thinking?&)
(幻灯片出现:物理中究竟什么是美丽和优雅呢?为什么在基本物理中美丽和优雅是判定正确理论的成功准则呢?若果有的话,人类和人类的思考的作用是什么呢?)
Now, what do we mean by beautiful, that's one thing, I'll try to make that clear- partially clear. Why should it work, and is this something to do with human beings? I'll let you in on the answer to the last one that I offer, and that is there's no need to be a human being. Somewhere in some other planet, orbiting some very distant star, maybe in a different galaxy, there could well be entities that are at least as intelligent as we are, and are interested in science. It's not impossible, I think there probably are lots. Very likely none is close enough to interact with us, but they could be out there, very easily. And suppose they have, you know, very different sensory apparatus, and so on, they have seven tentacles, and they have 14 little funny-looking compound eyes, and a brain shaped like a pretzel.
我会尽量说清楚究竟什么是物理中的美。为什么它在物理中有很大作用,以及这是不是和人类自身有关呢?我先回答最后一个问题,这和人类一点关系都没有。假设在遥远的星系的一颗行星上存在着至少和我们一样聪明的智慧生物,他们同样对科学感兴趣。这并不是不可能的。我想也许存在很多这样的星球。但他们离我们太遥远了,以至于无法和我们交流。但是他们仍可能存在。假设他们拥有和我们不同的器官,比如7个触手,14个可笑的小复眼和一个的形如法国号的大脑。
Would they really have different laws? There're lots of people that believe that, and I think it is utter baloney. I think there are laws out there, and we of course don't understand them at any given time very well, but we try. And we try to get closer and closer. And someday, we may actually figure out the fundamental unified theory of the particles and forces -- what I call the fundamental law -- we may not even be terribly far from it. But even if we don't run across it in our lifetimes, we can still think there is one out there, and we're just trying to get closer and closer to it.
他们生存的世界中会存在不同的物理规律吗?很多人坚信有,可我认为这纯属胡扯。我想那里存在一些我们无论何时也不能透彻了解的物理规律,但我们会努力去了解他们。我们会努力接近真理。也许在某一天我们最终会得到那个根本的统一粒子和力理论,我们称之为基本理论。我们甚至没有因为远离它而感到恐惧。但是尽管我们有生之年不会得到它,我们仍然可以说它是存在的。我们所做的就是不断接近它。
(slide-&A theory appears to be beautiful or elegant (or simple, if you prefer) when it can be expressed concisely in terms of mathematics we already have.&)
(幻灯片出现:当一个理论可以在我们已有的数学体系下简明的表示出来时,它就是优雅和美丽的(或简单,如果你更喜欢的话).
I think that's the main point to be made. We express these things mathematically, and when the mathematics is very simple, when in terms of some mathematical notation you can write the theory in a very brief space, without a lot of complication, that's essentially what we mean by beauty or elegance.
这是我最想说的。数学是简明的,当我们能够用数学把这些理论简明并且没有很多复杂步骤的表示出来时,这种理论就是优雅和美丽的。
(slide-&Nature obeys laws and, in Newton's words, 'it is the business of natural philosophy to find them out.' (Natural philosophy was, in his day, the term for science.) The laws are not just some construct of the human mind, although human beings are engaged in an effort to find successive approximations to those laws and finally, perhaps, discover their exact form.&)
(幻灯片出现:自然界遵循一定得规律,用牛顿的话说就是”自然哲学就是找出自然界规律的学科“(科学在牛顿那个年代称之为自然哲学)尽管人类不断努力去追寻这些规律的更精确形式,也许最终找到了他们的最终形式,但是这些规律不仅仅是人类的思维构想。
Here's what I was saying about the laws. They're really there. Newton certainly believed that, and he said, here, it is the business of natural philosophy to find out those laws.
我所说的这些自然规律都是客观存在的。牛顿坚信不移,并说”自然哲学就是找出自然界规律的学科“
(slide-& The basic law really takes the form of a unified quantum theory of all the fundamental forces and all the elementary particles.&)
(幻灯片出现:基本定律以一种有关于所有基本力和所有基本粒子的同统一量子理论的形式存在。)
The basic law, let's say -- here's an assumption -- the assumption is that the basic law really takes the form of a unified theory of all the particles. Now some people call that a theory of everything. That's wrong, because the theory is quantum mechanical. And I won't go into a lot of stuff about quantum mechanics and what it's like, and so on, you've heard a lot of wrong things about it anyway. (laughter) There're even movies about it with a lot of wrong stuff.
这里有一个关于基本定律的假设——基本定律是关于所有粒子的一种统一理论。现在有些人称之为万有理论。那是不正确的,因为这种理论是量子力学方面的。我不会继续讲一些关于量子力学的知识,你们一定听到过很多关于量子力学的错误说法。(众笑)甚至还有关于它的电影,当然那里面充斥着错误。
(slide-&Since it is quantum-mechanical, it predicts probabilities (some of which can be near-certainties) for future events, given past ones.
The history of the universe is thus co-determined by the basic law and an unimaginable long sequence of accidents (outcomes of chance events).&)
(幻灯片出现:量力力学是根据过去预测未来的可能性(有些可能接近正确)。)
But the main thing here is that it predicts probabilities. Now, sometimes those probabilities are near certainties, and in a lot of familiar cases, they of course are. But other times they're not, and you have only probabilities for different outcomes. So what that means is that the history of the universe is not determined just by the fundamental law, it's the fundamental law and this incredibly long series of accidents, or chance outcomes that are there in addition. And the fundamental theory doesn't include those chance outcomes, they are in addition. So it's not a theory of everything, and in fact a huge amount of the information in the universe around us comes from those accidents, and not just from the fundamental laws.
但最主要的是量子力学能预测可能性。有时它的预测是接近正确的,在很多相似的情况下,他们一定如此;但是有些时候却不行,他们提供众多可能的结果。因此这说明决定宇宙的历史不仅仅有基本定律,还应当有一些列具有不确定性和可能性行的事件。所以基本定律不是万有理论。事实上正是这些不确定因素产生了宇宙中大量的信息,而非基本定律。
(slide- &The Skins of an Onion&- etching of onion-
&Physicists approach that much-desired unified theory, working our way to smaller and smaller distances, or higher and higher energies or higher and higher accuracy. That situation has often been compared to peeling the skins of an onion.&)
(幻灯片出现:“洋葱皮”——剥洋葱
“物理学家不断接近大统一理论,在尺度上不断减小,在能量上不断加大,在准确性上不断提高。这正如一层一层剥下洋葱皮。)
Now it's often said that getting closer and closer to the fundamental laws by examining phenomena at low energies, and then higher energies, and then higher energies, or short distances, and then shorter distances and then still shorter distances and so on -- is like peeling the skin of an onion. And we keep doing that, and build more powerful machines, accelerators for particles. We look deeper and deeper into the structure of particles, and in that way we get probably closer and closer to this fundamental law.
通过不断提高能量、不断缩小尺度的方式来作为探究基本定律的方式正如一层层剥下洋葱皮。我们建造具有更高能量的粒子加速器。我们不断深入到粒子的更微小的结构当中,这样我们可能会更接近基本定律。
(slide-&As we go to higher and higher energies (smaller and smaller distances), the next onion skin (manifestation of the basic law) resembles the previous one to some extent.&
appearing later- &The result is that newly encountered phenomena are described rather simply, and therefore elegantly, in terms of mathematics close to what was already developed for phenomena discovered earlier.&)
(幻灯片出现:“当我们用更高的能量(更小的尺度)时,下一个洋葱皮(基本定律的证明)在某种程度上与前一个是类似的。”
“就为了解释早期现象而创建的数学而言,新发现的实验现象能够用非常简单的理论来解释,因此它很优雅。”)
Now what happens is that as we do that -- as we peel these skins of the onion, and we get closer and closer to the underlying law, we see that each skin has something in common with the previous one, and with the next one. We write them out mathematically, and we see they use very similar mathematics. They require very similar mathematics. That is absolutely remarkable, and that is a central feature of what I'm trying to say today. Newton called it -- (gesturing to portrait of Newton) that's Newton, by the way- (slide of Newton) -- that one. (slide of Einstein) This one is Albert Einstein. Hi, Al! And anyway, he said 'nature conformable to herself,' personifying nature as a female. And so what happens is that the new phenomena, the new skins, the inner skins of the -- slightly smaller skins of the onion that we get to -- resemble the slightly larger ones.
当我们剥下这些洋葱皮从而接近下一层的定律时,我们每一层洋葱皮和它前一层、下一层之间都存在共性。当我们用数学把它们表示出来时,我们发现他们使用的数学是相似的。这绝对是惊人的发现,这也正是我今天最想说的。牛顿称之为“大自然是自适应的”(并赋予自然女性的形象)。因此下一个洋葱皮在某种程度上与前一个是类似的。
(slide- previous one with new line of text added- &That is a property of the basic law, not of human observers. The manifestations of the law at different scales exhibit approximate self-similarity. Newton called it 'Nature conformable to Herself.'&)
(幻灯片出现:那是基本定律的特性,而非观察者的。这些规律的在不同的尺度上显示出自相似性。牛顿称之为“大自然是自适应的”)
And the kind of mathematics that we had --For the previous skin, is almost the same as what we need for the next skin. And that's why the equations look so simple. 'Cause they use mathematics we already have.
数学在这些不同的尺度上是相似的。这就是为什么方程看起来很类似。因为他们使用的数学是我们已经熟知的。
A trivial example is this:
(slide-&Example: Newton's famous approximate formula for the gravitational force between two bodies. The force is proportional to the inverse square of the distance between those bodies.
Coulomb later discovered the formula for the electric force between two charges. Again, the inverse square law.&)
这有一个小例子:
(幻灯片出现:牛顿著名的万有引力公式。万有引力与距离的二次方成反比。在此之后,库伦发现了电荷间的力,也和距离的二次方成反比。)
Newton found the law of gravity, which goes like 1 over the square of the distance between the things gravitated. Coulomb, in France, found the same law for electric charges. Here's an example of this similarity. You look at gravity, you see a certain law, then you look at electricity- sure enough, the same rule. It's a very simple example. There are lots of more sophisticated examples.
Symmetry is very important in this discussion. You know what it means. A circle, for example, is symmetric under rotations around the center of the circle. You rotate around the center of the circle, the circle remains unchanged.
牛顿发现万有引力与距离的二次方成反比。法国的库伦发现电荷间的作用也遵循同样的规律。这就是相似性的一个例子。你会发现万有引力和库仑定律遵从相似的规律。这非常简单。还有更多复杂的例子。对称性在这里是非常重要的。你们对此一定很了解。举个例子来说,把一个圆绕中心旋转,你会发现它保持不变。)
(slide-&We must now refer to the idea of symmetry. A circle, for example, is symmetrical under all rotations about the center of the circle. In three dimensions, a sphere is likewise symmetrical under all rotations about its center. An object or a phenomenon exhibits a kind of symmetry if performing certain operations consistently on all parts leaves its description unchanged. We say the object or phenomenon is symmetrical under those operations.&)
(幻灯片出现:现在我们必须要有对称这种观点。比方说,圆是中心对称的。在三维空间中,球同样是中心对称的。如果一个物体或一种现象经过某种操作后能够保持不变,那么它就具有对称性。)
You take a sphere, in 3 dimensions, you rotate around the center of the sphere, and all those rotations leave the sphere alone. They are symmetries of the sphere. So we say, in general, that there's a symmetry under certain operations if those operations leave the phenomenon, or its description, unchanged. Maxwell's equations are of course symmetrical under rotations of all of space. Doesn't matter if we turn the whole of space around by some angle, it doesn't leave the -- doesn't change the phenomenon of electricity or magnetism.
那一个三维的球来说,无论你怎样把它绕中心旋转,它都会保持不变。这就是球的对称性。因此大体上说,如果一个物体或一种现象经过某种操作后能够保持不变,那么它就具有对称性。麦克斯韦方程就具有这种性质。无论我们把空间旋转怎样一个角度,电和磁的显现都不会改变。
(slide-&Improved Notation
The development of a new mathematical notation, vector analysis, by J. Willard Gibbs at Yale and Oliver Heaviside in England made the expression of Maxwell's relations even more compact and therefore more beautiful or elegant.
Then, with Einstein's special theory of relativity, a still more concise formulation became possible, one that fully exhibited the symmetries of the system. Maxwell's equations were thus reduced to just two in number. One of them describes how electric and magnetic fields are generated by electric charges and their currents. The other describes the absence of magnetic fields that don't come from electric currents.&)
(幻灯片出现:随着由耶鲁大学的Willard Gibbs和英国的Oliver Heaviside 创建的一门叫做矢量分析的
新数学体系的出现,麦克斯韦方程组的形式变得更加紧凑,从而更加美丽和优雅。
接着爱因斯坦提出了狭义相对论—一种更简明的公式,它更体现了对称性。麦克斯韦方程组因此也变得只有两项。其中一项指出电场和磁场是怎样由电荷和电流产生的,另一项指出磁场的缺失并不是由电流产生的。)
There's a new notation in the 19th century that expressed this, and if you use that notation, the equations get a lot simpler. Then Einstein, with his special theory of relativity, looked at a whole set of symmetries of Maxwell's equations, which are called special relativity. And those symmetries, then, make the equations even shorter, and even prettier, therefore.
Let's look. You don't have to know what these things mean, doesn't make any difference. But you can just look at the form (laughter). You can look at the form.
19世纪出现了一种新的符号法则来表达麦克斯韦方程,这使麦克斯韦方程组更加简洁。爱因斯坦的狭义相对论关注的是麦克斯韦方程体系的整体对称性。这使得麦克斯韦方程组更简洁,更加漂亮。让我们来看一下幻灯片。你们并不用知道这些公式具体的含义是什么,这没什么大影响,你只需看它们的形式就行啦(众笑)。让我们看一下它的形式。
(slide-shows original equations, then equations re-written as vector analysis, then using the symmetry of special relativity)
(幻灯片出现:麦克斯韦方程组用矢量的形式重新表示,并利用狭义相对论你的对称性。)
You see above, at the top, a long list of equations with three components for the three directions of space x, y, and z. Then, using vector analysis, you use rotational symmetry, and you get this next set. Then you use the symmetry of special relativity and you get an even simpler set, down here, showing that symmetry exhibits better and better- the more and more symmetry you have, the better you exhibit the simplicity and elegance of the theory. The last two, the first equation says that electric charges and currents give rise to all the electric and magnetic fields. The next -- second equation -- says that there is no magnetism other than that. The only magnetism comes from electric charges and currents. Someday we may find some slight hole in that argument. But for the moment, that's the case.
(你们可以看到,这是一系列具有xyz三个空间分量的方程组。但是当你使用矢量形式时,一种轮换对称的形式,你们会看到接下来这种形势。当你使用狭义相对论的对称形式时,你就会得到一种更加简洁的形式。来看这里,越是对称,你的理论就会呈现出更加简洁和优雅的形式。我们来看最后两个方程,第一个方程说明电荷和电流是怎样产生电场和磁场的,接下来的一个方程说明除了磁场之外没有别的东西了。磁场唯一的来源就是电荷和电流。也许有一天我们会发现这些理论中的小小不足。但就现在看来,这种理论还是正确的。)
Now, here is a very exciting development that many people have not heard of. They should have heard of it, but it's a little tricky to explain in technical detail, so I won't do it. I'll just mention it.
现在有一个很多人都没有听说过的令人兴奋的发展。他们应当听说过它,但是把它解释清楚需要一些技巧,所以我不准备这么做了。我就是稍微提一下。
(slide- &Yang-Mills TheoryFifty years ago a new set of equations was presented by C.N. (Frank) Yang and Robert Mills. They were generalizations of Maxwell's equations incorporating a highersymmetry.&)
(幻灯片出现:50年前,杨振宁和罗伯特-米尔斯提出了杨-米尔斯理论。它具有更高对称性麦克斯韦方程组的概括。)
But Chen Ning Yang, called by us Frank Yang, (laughter) and Bob Mills put forward, 50 years ago, this generalization of Maxwell's equations, with a new symmetry. A whole new symmetry. Mathematics very similar, but there was a whole new symmetry. They hoped that this would contribute somehow to particle physics- didn't. It didn't, by itself, contribute to particle physics. But then some of us generalized it further:
50年前,杨振宁和罗伯特-米尔斯提出了杨-米尔斯理论,这种对麦克斯韦方程组的概括有全新的对称性。z在数学上很相似,这是一种全新的对称。他们希望这会对粒子物理有帮助。然而它本身并没有对粒子物理有帮助。但是我们中的一些人把它更进一步的推广了:
(&Further Generalizations Successful
Then, over the next few years, some of us elementary particle theorists showed how to generalize the Yang-Mills idea further to include still higher symmetries and also broken symmetries. We also pointed out, over time, how particular generalizations of the Yang-Mills equations could describe the forces -- the so-called strong and weak forces -- that were known to exist in addition to electromagnetism and gravitation.&)
(这种更进一步的推广是成功的。在接下来的几年中,一些基本粒子学家指出如何把杨-米尔斯理论推广到更高一级的对称体系中和破缺的对称体系中。我们还指出,随着时间的推移,怎样利用杨-米尔斯方程来描述强相互作用和弱相互作用(除了电磁力和万有引力存在的两种力))
And then it did! And it gave a very beautiful description of the strong force, and of the weak force. So here we say, again, what we said before -- that each skin of the onion shows a similarity to the adjoining skins -- so the mathematics for the adjoining skins is very similar to what we need for the new one. And therefore it looks beautiful. 'Cause we already know how to write it in a lovely, concise way.
我们成功了。我们得到了一种漂亮的方法来描述强相互作用和弱相互作用。所以我们说,正如洋葱皮之间存在着联系一样,描述新旧理论的数学也是相似的。因此它看上去美极了。因为我们已经知道用如何把它用漂亮和简明的方式表示出来。
EXISTENCE OF A BASIC UNIFIED THEORY
STEPS TOWARD UNIFICATION SYMMETRY
SELF-SIMILARITY ACROSS SCALES&)
基本统一理论的存在是在不同尺度朝向统一自相似的关键一步)
So here are the themes. We believe there is a unified theory underlying all the regularities. Steps toward unification exhibit the simplicity -- symmetry exhibits the simplicity -- and then there is self similarity across the scales, in other words, from one skin of the onion to another one. Proximate self similarity. And that accounts for this phenomenon. That will account for why beauty is a successful criterion for selecting the right theory.
这是所有的主题。我们相信在所有的规律下有一个统一的理论。在接近统一理论的过程中,我们发现其中存在者体现简洁的对称性。在所有的尺度上都存在这近似的自相似性。那就解释了这个现象。那也将解释为什么美是选择正确理论的成功准则。
Here's what Newton himself said:
(&From Newton's Optics:
'For Nature is very consonant and conformable to her self'&)
Nature is very consonant and conformable to her self. What I think he was thinking of is something that most of us take for granted today, but in his day it wasn't taken for granted. There's the story, which is not absolutely certain to be right, but a lot of people told it. Four sources told it. That, when they had the plague in Cambridge, and he went down to his mother's farm, because the university was closed, he saw an apple fall from a tree, or on his head, or something, and he realized suddenly that the force that drew the apple down to the earth could be the same as the force regulating the motions of the planets and the moon. That was a big unification for those days, although today we take it for granted. It's the same theory of gravity. So he said that:
(牛顿光学指出:“自然是和谐和自相似的。”)
自然是和谐和自相似的。他的这种思想在我们今天看来是天经地义的,然而在他的那个时代人们可不这么想。我想讲一个故事,这个故事并不一定是真的,但很多人都讲过。当剑桥大学爆发瘟疫时,牛顿回到到他母亲的农场。他看到苹果从树上落下来,也有人说是砸到了他的脑袋,他突然意识到这种把苹果吸向地面的力很有可能和规范月球和行星运动的力是一致的。虽然今天看来这是无可厚非的,在那个年代,这是一个伟大的统一。它就是万有引力定律。
所以他说:
(&From Newton:
'This principle of nature being very remote from the conceptions of Philosophers, I forbore to describe it in that book, least I should be accounted an extravagant freak and so prejudice my Readers against all those things which were the main designe (sic) of the book.'&)
(牛顿说:这种自然法则与哲学家的观念相距甚远。我克制自己没有把这种想法写进我的书里,否则我会被认为是一个奢侈的怪胎,并对我的读者怀有偏见。)
This principle of nature -- consonance -- &this principle of nature being very remote from the conceptions of philosophers, I forbore to describe it in that book, lest I should be accounted an extravagant freak.& That's what we all have to watch out for. (laughter) Especially at this meeting. 'And so prejudice my readers against all those things which were the main design of the book.'
Now, who today would claim that as a mere conceit of the human mind? That the force that causes the apple to fall to the ground is the same force that causes the planets and the moon to move around, and so on? Everybody knows that. It's the property of gravitation. It's not something in the human mind. The human mind can, of course, appreciate it, and enjoy it, use it -- but it's not -- it doesn't stem from the human mind. It stems from the character of gravity. And that's true of all the things we're talking about. They are properties of the fundamental law. The fundamental law is such that the different skins of the onion resemble one another, and therefore the math for one skin allows you to express beautifully and simply the phenomenon of the next skin.
自然界的准则——和谐——“这种自然法则与哲学家的观念相距甚远。我克制自己没有把这种想法写进我的书里,否则我会被认为是一个奢侈的怪胎”对一点我们都十分小心。(众笑)特别是在这个会议上。
“我的读者对本书的主要内容怀有偏见”。除非被视为一个妄想狂,否则现今没有人会否认把苹果吸向地面的力很有可能和规范月球和行星运动的力是一致的。这就是万有引力的性质,我们都很了解了。它不是人们头脑中臆造的。人类的思维可以赏识这些规律,但归根结底这些规律并不源自人类的大脑。它源于引力自身的特性。这对我们所谈论的一切都是成立的。它们是基本定律体现的特性。不同尺度上基本定律是相似的,因此不同尺度上的数学手段是可以通用的,你可以用这个尺度上的数学把下一个尺度的物理规律漂亮和简洁的描述出来。
(slide- picture of basket of apples- &Newton and Gravity
Newton's summer of 1665 was really part of an annus mirabilis, a marvelous year, as it is often called. At the University of Cambridge he worked on his theory of gravitation, his laws of motion, calculus, and created a demonstration with a prism that white light is composed of the colors of the spectrum.&)
(幻灯片出现:一篮子苹果—牛顿和万有引力
1665年是不可思议的一年。在剑桥大学,牛顿创立了万有引力定律,牛顿运动定律,微积分,并且制造了一个棱镜,从而证明了白光是由不同颜色的光组成的。)
I say here that Newton did a lot of things that year -- gravity, the laws of motion, the calculus, white light composed of all the colors of the rainbow -- and he could have written quite an essay on 'what I did over my summer vacation.' (laughter)
在那一年牛顿创立了万有引力定律,牛顿运动定律,微积分,并发现白光是由类似彩虹的不同颜色的光组成的。他应该写一篇论文,题目就叫做“我在暑假都干了什么”(众笑)
(&Three principles- the conformability of nature to herself, the applicability of the criterion of simplicity, and the 'unreasonable effectiveness' of certain parts of mathematics in describing physical reality- are thus consequences of the underlying law of the elementary particles and their interactions. Those three principles need not be assumed as separate metaphysical postulates. Instead, they are emergent properties of the fundamental laws of physics.&)
(“三个原则——自然界的一致性,简单原则的适应性,数学在描述物理事实时的‘无理由的有效性’。它们是基本粒子和它们相互作用定律的结果。这三个原则不需要被看做是独立的抽象的假设。相反,它们是物理基本定律的涌现性。)
So we don't have to assume these principles as separate metaphysical postulates. They follow from the fundamental theory. They are what we call emergent properties. You don't need something more to get something more. That's what emergence means. Life can emerge from physics and chemistry, plus a lot of accidents. The human mind can arise from neurobiology, and a lot of accidents. The way the chemical bond arises from physics and certain accidents. Doesn't diminish the importance of these subjects, to know that they follow from more fundamental things, plus accidents. That's a general rule, and it's critically important to realize that. You don't need something more in order to get something more. People keep asking that when they read my book, The Quark and the Jaguar, and they say 'isn't there something more beyond what you have there?' Presumably they mean something supernatural. Anyway, there isn't. (laughs) You don't need something more to explain something more. Thank you very much.
因此我们不需要假定这些原则是独立的抽象假设。它们是由基本定律推导出的。我们称之为涌现性。我们不需要更多的东西来得到更多的东西。这就是涌现性的含义。生命源于物理和化学,再加上很多意外。人类的智慧源于神精细胞和很多意外因素。这些化学作用源于物理和特定的意外因素。知道它们遵循基本定律和一些意外因素并不会较少其重要性。存在一个大体上的原则,意识到这点很重要。你不需要更多的东西来得到更多的东西。当人们读我的书《Quark and the Jaguar》,他们总是禁不住要问:除了你说以外,还有其他更多的吗?他们很可能在问是否存在超自然。无论怎样也不会存在。(众笑)你不需要更多的东西来解释更多的东西。非常感谢。
相关译文来自无觅插件
看完这个,不得不佩服老子,不得不佩服祖先的智慧。
&theory of everything&应该翻译成“万有理论”。
原文的链接有误,当改为:/2007/12/murray_gellmann.php
'unreasonable effectiveness' 翻译为 “不可思议的有效性”也许更好?
还没有人赞过这篇文章
Copyright & 2014 yeeyan.org&&|&&&&|&&
北京译言协力传媒科技有限公司
京ICP证号&&京公网安备99号
&&|&&&&|&&
&&|&&&&|&&&&|&&

我要回帖

更多关于 生活中处处有物理 的文章

 

随机推荐